首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32235篇
  免费   531篇
  国内免费   251篇
测绘学   801篇
大气科学   2437篇
地球物理   6582篇
地质学   11741篇
海洋学   2817篇
天文学   6628篇
综合类   86篇
自然地理   1925篇
  2021年   318篇
  2020年   340篇
  2019年   339篇
  2018年   836篇
  2017年   834篇
  2016年   1013篇
  2015年   588篇
  2014年   943篇
  2013年   1748篇
  2012年   1074篇
  2011年   1358篇
  2010年   1185篇
  2009年   1519篇
  2008年   1309篇
  2007年   1291篇
  2006年   1242篇
  2005年   922篇
  2004年   923篇
  2003年   833篇
  2002年   808篇
  2001年   753篇
  2000年   744篇
  1999年   582篇
  1998年   553篇
  1997年   633篇
  1996年   498篇
  1995年   491篇
  1994年   498篇
  1993年   401篇
  1992年   400篇
  1991年   369篇
  1990年   387篇
  1989年   354篇
  1988年   357篇
  1987年   379篇
  1986年   341篇
  1985年   437篇
  1984年   432篇
  1983年   461篇
  1982年   429篇
  1981年   371篇
  1980年   409篇
  1979年   333篇
  1978年   312篇
  1977年   299篇
  1976年   273篇
  1975年   275篇
  1974年   286篇
  1973年   264篇
  1971年   182篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
891.
During the EPOS leg 2 cruise (European Polarstern Study, November 1988–January 1989), the production rate of biogenic silica in the euphotic zone was measured by the 30Si method at stations in the Scotia and Weddell Seas.The highest integrated production rates were observed in the Scotia Sea (range: 11.2–20.6 mmol Si m−2 day−1), the marginal ice zone of the Weddell Sea exhibiting somewhat lower values (range: 6.0–20.0 mmol Si m−2day−1).Our results demonstrate that as far as biogenic silica production is concerned the marginal ice zone of the Weddell Sea is considerably less productive than that of the Ross Sea. Our results also indicate that the water of the Antarctic Circumpolar Current (ACC) could be more productive in late spring and early summer than at the beginning of spring. Possible reasons for the differences among the three subsystems (Ross Sea, Weddell Sea and ACC) are discussed.  相似文献   
892.
893.
Izvestiya, Atmospheric and Oceanic Physics - The MIRS microwave radiometer–spectrometer is described. The instrument is being developed using a conceptual design that was the first stage of...  相似文献   
894.
The Volch??etundrovsky Massif occupies the middle part of the autonomous anorthosite complex of the Main Range, has a sheet morphology and marks the tectonic suture between the Kola block and the Belomorian mobile belt. The massif is characterized by homogenous structure and consists of the volumetrically dominant Main Zone including leucogabbro, leucogabbronorites, and anorthosites, and Marginal Zone made up of leuconorites and gabbronorites with subordinate plagioclasites and orthopyroxenites. Chemically, the rocks of the Volch??etundrovsky Massif are ascribed to the normal (tholeiitic and calc-alkaline) petrochemical series with typomorphic high Al2O3 contents (11.71?C29.32 wt %). With Al2O3 increase in the leuconorite-anorthosite series, the SiO2 and TiO2 contents show weak variations, CaO and alkalis insignificantly increase, whereas the MgO and FeO contents sharply decrease. The rocks of the Volch??etundrovsky Massif reveal significant REE fractionation and increase in total REE content in the leuconorite-anorthosite series, most approximating the Paleoproterozoic (Sumian) anorthosites of the Kola region. The anorthosites and leucogabbro are characterized by flat HREE, while the leuconorites is strongly depleted in HREE due to garnet fractionation. All rocks of the massif have significant positive Eu anomalies caused by the plagioclase accumulation. Zircons are characterized by LREE depletion and enrichment in HREE. This defines the steep positive slope of the plots complicated by the negative Eu and positive Ce (in zircons from leucogabbro) anomalies, which is typical of the REE distribution patterns in the unaltered zircons from igneous rocks. In zircons from anorthosites, the Ce anomaly is weak to absent. The trace-element distribution in the rocks of the Volch??etundrovsky Massif show positive Ba, Ta, Pb, Sr, Sc, and V anomalies, being controlled by the mineral specifics of the massif and the presence of definite accessory minerals. New U-Pb zircon data on the rocks of the Volch??etundrovsky Massif indicate that the leuconorites from the Marginal Zone were formed 2473 ± 7 Ma and 2463 ± 2.4 Ma ago, and the leucogabbro from the Main Zone, 2467 ± 8 Ma. These rocks have negative ?Nd(T) from -1.54 up to -3.10, which indicates their derivation from enriched mantle reservoir variably contaminated by crustal material. The anorthosites of the Main Zone define an U-Pb age of 2407 ± 3 Ma and ?Nd(T) = ?3.78, which presumably reflect the timing of hydrothermal-metasomatic alterations in the upper part of the magmatic chamber accompanied by significant crustal contamination.  相似文献   
895.
Stratabound epigenetic sulphide Zn–Pb–Cu ore deposits of the Central African Copperbelt in the Democratic Republic of Congo and Zambia are mostly hosted in deformed shallow marine platform carbonates and associated sedimentary rocks of the Neoproterozoic Katanga Supergroup. Economic orebodies, that also contain variable amounts of minor Cd, Co, Ge, Ag, Re, As, Mo, Ga, and V, occur mainly as irregular pipe-like bodies associated with collapse breccias and faults as well as lenticular bodies subparallel to bedding. Kipushi and Kabwe in the Democratic Republic of the Congo and Zambia, respectively, are the major examples of carbonate-hosted Zn–Pb–Cu mined deposits with important by-products of Ge, Cd, Ag and V in the Lufilian Arc, a major metallogenic province famous for its world-class sediment-hosted stratiform Cu–Co deposits. The carbonate-hosted deposits range in age from Neoproterozoic to early Palaeozoic (680 to 450 Ma). The formation of the relatively older Neoproterozoic deposits is probably related to early collision events during the Lufilian Orogeny, whereas the younger Palaeozoic deposits may be related to post-collisional processes of ore formation. Fluid inclusion and stable isotope data indicate that hydrothermal metal-bearing fluids evolved from formation brines during basin evolution and later tectonogenesis. Ore fluid migration occurred mainly along major thrust zones and other structural discontinuities such as karsts, breccias and faults within the Katangan cover rocks, resulting in ore deposition within favourable structures and reactive carbonates of the Katangan Supergroup.  相似文献   
896.
Geotechnical and Geological Engineering - The excavations of portal sections are always critical steps during the tunnel construction process, as previously excavated portal slopes can be...  相似文献   
897.
Santa Monica Bay is an open coastal embayment located directly seaward of Los Angeles, California. The Bay provides vital economic value through its water-dependent activities, such as swimming, diving, boating, and fishing. An increase from 100,000 residents in 1900 to 10 million in 2000 has imposed numerous environmental stressors on the Bay, including urbanization of the watershed. Pollutant discharges into the Bay increased throughout the early part of the century, but declined following passage of the Clean Water Act in 1972. Since that time, the predominant source of pollutant inputs has changed from point sources to non-point urban runoff. To assess how present-day and historical pollution interact to affect the environmental quality of Santa Monica Bay, three organizations collaborated on a multi-disciplinary study in 1997, towards which this volume is focused. This paper details the temporal patterns of anthropogenic influence on Santa Monica Bay to provide context for the papers that follow.  相似文献   
898.
Abstract. The benthic recovery after dredging (area: 2625 m2) was studied in a polluted and enclosed area of the harbour of Ceuta, in which the recolonization through the water column (larvae and adult bedload transport) could be limited by the lack of renewal. The benthos was sampled at two sites (control and dredged) using a van Veen grab and adopting a BACI (Before, After, Control, Impacted) approach. Five samplings were conducted after dredging (3, 15, 30, 90, 180 days). The proportion of gravel in the sediment of the dredged site increased after dredging, while the organic matter decreased. The impact on the community was estimated at species level, using both univariate and multivariate analyses. The maximum negative effect on benthic macrofauna was a reduction by 65% for species richness (15 days after dredging) and by 75% for abundance (3 days after dredging). Between 15 and 30 days after dredging, the abundance of some species such as the molluscs Parvicardium exiguum and Retusa obtusa and the polychaete Pseudomalacoceros tridentata increased considerably in the dredged site, while typical ‘opportunistic’ species such as Capitella capitata were disfavoured by the disturbance. For this small‐scale dredging, about 6 months are required for the disturbed area to re‐establish a sediment structure and a macrobenthic community similar to the undisturbed area. Small‐patch dredging operations are proposed in harbour management whenever possible, since they allow a quick re‐adjustment of the initial sediment structure and benthic communities.  相似文献   
899.
Alister Hardy conceived the Continuous Plankton Recorder (CPR) survey in the 1920s as a means of mapping near-surface plankton in space and time, interpreting the changing fortunes of the fisheries and relating plankton changes to hydrometeorology and climatic change. The seed he planted has grown to become the most extensive long-term survey of marine organisms in the world and the breadth of his vision becomes ever more apparent. The survey has now run for over 70 years and its value increases with every passing decade. Operating from ‘ships of opportunity’ the machines used are robust, reliable and easy to handle. Wherever possible, all the sampling and analytical methods have not been changed to maintain the consistency of the time series. Computerisation and the development of new statistical approaches have increased our ability to handle the large quantities of information generated and enhance the sensitivity of the data analyses. This overview, based on almost 900 papers, recounts the various phases in the history of the survey. It starts with the Indicator Survey (1921–1934), the deployment of the first CPR on the Discovery Expedition (1924–1927) and the early CPR survey in the North Sea (1931–1939). The survey reopened in 1946 after the Second World War and expanded across the North Atlantic to North America from 1959. Taxonomic studies were initiated and an emphasis was placed on patterns of distribution, which were seen to reflect the varying oceanographic conditions. The years 1968–1976 saw further expansion with operations even in the American Great Lakes, publication of a Plankton Atlas and initial evidence for a downward trend in plankton biomass. At about this time electronic instrumentation was attached to CPRs to make additional measurements and work was started on the development of a new generation of undulating Continuous Plankton and Environmental Recorders (CPERs). In 1976 the survey moved to Plymouth. Scientific priorities in the UK changed in the subsequent decade and funding became more difficult to secure even though some of the CPR papers being published at the time are now regarded as classics in plankton ecology. In 1988 the UK Natural Environment Research Council (NERC) decided to close the survey. An international rescue operation led to the creation of the Sir Alister Hardy Foundation for Ocean Science (SAHFOS) in 1990, which has continued with consortium funding from a number of countries, and from 1999 again included NERC. The scientific rationale of the survey has gained credibility as concern over climate change and other anthropogenic effects has grown and as the key role that plankton plays as an indicator of large-scale environmental conditions becomes ever more apparent. Recently, the survey became an integral component of the Global Ocean Observation System (GOOS) and expanded into the North Pacific. It plays a complementary role in many large international and multidisciplinary projects and is providing inspiration, advice and support to daughter surveys elsewhere in the world. At the start of a new millennium, Hardy’s vision from the 1920s is a powerful driving force not just in international biological oceanography, but in global environmental science.  相似文献   
900.
The spatial size distribution of grunts and snappers have previously indicated the separation of juveniles in nursery habitats from the adults on the coral reef. This implies life cycle migrations from nursery habitats (such as seagrass beds and mangroves) to the coral reef. If diet shifts are related to such migrations, then the diets of these fish must change before or around the fish size at which such migrations take place. A wide size range of juveniles of two grunt species (Haemulon sciurus and Haemulon flavolineatum) and of two snapper species (Lutjanus apodus and Ocyurus chrysurus) were caught in seagrass beds and mangroves, and their gut contents identified and quantified. Regression analysis between fish size and dietary importance of small crustaceans showed a negative relationship in all four species. Positive relations were found for H. sciurus, L. apodus and O. chrysurus between fish length and the dietary importance of decapods, and for L. apodusand O. chrysurus between fish length and prey fish importance. Critical changes in the fish diets with fish size were examined by application of a Canonical Correspondence Analysis (CCA). The CCA yielded three clusters of size-classes of fishes with similar diets, and application of a Mantel test showed that each of these clusters had significantly different diets, and that each cluster diet was significantly specialised. The size at which a fish species ‘switched’ from one cluster to another was compared with size-at-maturity data and with the typical size at which these species migrate from the nursery habitats to the coral reef. H. sciurus and H. flavolineatum may be prompted to migrate from the nursery habitats to coral reef habitats because of dietary changes, or because of the development of the gonads. For L. apodus and O. chrysurus, a dietary changeover forms a more likely explanation for nursery-to-reef migrations than does sexual maturation because these species reach maturity at sizes much larger than the maximum size of individuals found in nursery habitats. Although other factors may theoretically initiate or promote the migration patterns, the results of this study indicate that ontogenetic dietary changes may crucially influence the nursery-to-coral reef migrations of these reef fish species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号