首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   104篇
  免费   4篇
大气科学   6篇
地球物理   34篇
地质学   25篇
海洋学   25篇
天文学   9篇
综合类   6篇
自然地理   3篇
  2022年   2篇
  2021年   2篇
  2020年   1篇
  2018年   1篇
  2017年   5篇
  2016年   7篇
  2015年   2篇
  2014年   3篇
  2013年   4篇
  2012年   1篇
  2011年   6篇
  2010年   1篇
  2009年   6篇
  2008年   10篇
  2007年   8篇
  2006年   9篇
  2005年   8篇
  2004年   8篇
  2003年   4篇
  2002年   3篇
  2001年   1篇
  2000年   3篇
  1999年   1篇
  1998年   1篇
  1997年   3篇
  1996年   1篇
  1994年   2篇
  1987年   1篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1978年   1篇
排序方式: 共有108条查询结果,搜索用时 15 毫秒
51.
We estimated metamorphic conditions for the  6 Ma Taitao ophiolite, associated with the Chile triple junction. The metamorphic grade of the ophiolite, estimated from secondary matrix minerals, changes stratigraphically downwards from the zeolite facies, through the prehnite–actinolite facies, greenschist facies and the greenschist–amphibolite transition, to the amphibolite facies. The metamorphic facies series corresponds to the low-pressure type. The metamorphic zone boundaries are subparallel to the internal lithological boundaries of the ophiolite, indicating that the metamorphism was due to axial hydrothermal alteration at a mid-ocean ridge.

Mineral assemblages and the compositions of veins systematically change from quartz-dominated, through epidote-dominated, to prehnite-dominated with increasing depth. Temperatures estimated from the vein assemblages range from  230 °C in the volcanic unit to  380 °C at the bottom of the gabbro unit, systematically  200 °C lower than estimates from the adjoining matrix minerals. The late development of veins and the systematically lower temperatures suggest that the vein-forming alteration was due to off-axis hydrothermal alteration.

Comparison between the Taitao ophiolite with its mid-ocean ridge (MOR) affinity, and other ophiolites and MOR crusts, suggests that the Taitao ophiolite has many hydrothermal alteration features similar to those of MOR crusts. This is consistent with the tectonic history that the Taitao ophiolite was formed at the South Chile ridge system near the South American continent (Anma, R., Armstrong, R., Danhara, T., Orihashi, Y. and Iwano, H., 2006. Zircon sensitive high mass-resolution ion microprobe U–Pb and fission-track ages for gabbros and sheeted dykes of the Taitao ophiolite, Southern Chile, and their tectonic implications. The Island Arc, 15(1): 130–142).  相似文献   

52.
Organic geochemical data was collected from a KP-2 piston core sample obtained from a mud volcano in the Nankai Trough, off the southeast coast of Japan. The Nankai Trough was investigated geologically and was found to have a large amount of methane hydrates. Biomarkers indicating anaerobic oxidation of methane (AOM) were expected to be found in the sediment of the mud volcano collected by KP-2 core. But the gas chromatography-mass spectrometry (GC-MS) analysis of the samples showed only one biomarker related to the methane-oxidizing Archaea, namely 2,6,10,15,19-pentamethyleicosane (PME), could be detected throughout the KP-2 core. Phytane was predominant in the upper part of the KP-2 core; however, a series of 2,2-dimethylalkanes (2,2-DMAs) were characterized in the lower part of KP-2 core. The individual δ13C values of 2,2-DMAs, which were − 29.1 to − 27.3‰ indicate that the origin of 2,2-DMAs was not related to methane-oxidizing Archaea.  相似文献   
53.
Abstract The Kokchetav Massif of Kazakhstan includes high to ultrahigh-pressure (HP–UHP) metamorphic rocks (some of which were recrystallized at depths in excess of 150 km), juxtaposed against much lower pressure metamorphic components. We investigated the relationship between the HP–UHP metamorphic unit and the low pressure (LP) unit (Daulet Suite) in the Sulu–Tjube area, where the metamorphic rocks have previously been interpreted as constituting a megamelange with subvertical structural attitudes. Analyses of fold structures suggest that the HP–UHP metamorphic unit overlies the LP unit across a west-dipping subhorizontal boundary. In addition, kinematic indicators display top-to-the-north senses of shear along the tectonic contact between the two units, indicating that the HP–UHP unit has been extruded northward onto the LP unit. Following the juxtaposition of the two units, upright folds developed in both units, and these are associated with the previously reported steeply dipping metamorphic foliations. These data have important implications for the mode of exhumation of the UHP rocks from upper mantle to shallow crustal depths.  相似文献   
54.
The Middle Miocene Tsushima granite pluton is composed of leucocratic granites, gray granites and numerous mafic microgranular enclaves (MME). The granites have a metaluminous to slightly peraluminous composition and belong to the calc‐alkaline series, as do many other coeval granites of southwestern Japan, all of which formed in relation to the opening of the Sea of Japan. The Tsushima granites are unique in that they occur in the back‐arc area of the innermost Inner Zone of Southwest Japan, contain numerous miarolitic cavities, and show shallow crystallization (2–6 km deep), based on hornblende geobarometry. The leucocratic granite has higher initial 87Sr/86Sr ratios (0.7065–0.7085) and lower εNd(t) (?7.70 to ?4.35) than the MME of basaltic–dacitic composition (0.7044–0.7061 and ?0.53 to ?5.24), whereas most gray granites have intermediate chemical and Sr–Nd isotopic compositions (0.7061–0.7072 and ?3.75 to ?6.17). Field, petrological, and geochemical data demonstrate that the Tsushima granites formed by the mingling and mixing of mafic and felsic magmas. The Sr–Nd–Pb isotope data strongly suggest that the mafic magma was derived from two mantle components with depleted mantle material and enriched mantle I (EMI) compositions, whereas the felsic magma formed by mixing of upper mantle magma of EMI composition with metabasic rocks in the overlying lower crust. Element data points deviating from the simple mixing line of the two magmas may indicate fractional crystallization of the felsic magma or chemical modification by hydrothermal fluid. The miarolitic cavities and enrichment of alkali elements in the MME suggest rapid cooling of the mingled magma accompanied by elemental transport by hydrothermal fluid. The inferred genesis of this magma–fluid system is as follows: (i) the mafic and felsic magmas were generated in the mantle and lower crust, respectively, by a large heat supply and pressure decrease under back‐arc conditions induced by mantle upwelling and crustal thinning; (ii) they mingled and crystallized rapidly at shallow depths in the upper crust without interaction during the ascent of the magmas from the middle to the upper crust, which (iii) led to fluid generation in the shallow crust. The upper mantle in southwest Japan thus has an EMI‐like composition, which plays an important role in the genesis of igneous rocks there.  相似文献   
55.
By analyzing the results of a realistic ocean general circulation model (OGCM) and conducting a series of idealized OGCM experiments, the dynamics of the Kuroshio Current System is examined. In the realistic configuration, the Kuroshio Current System is successfully simulated when the horizontal resolution of OGCMs is increased from 1/2° to 1/10°. The difference between the two experiments shows a jet, the model’s Kuroshio Extension, and a pair of cyclonic and anticyclonic, “relative,” recirculation gyres (RRGs) on the northern and southern flanks of the jet. We call them recirculation gyres because they share some features with ordinary recirculation gyres in previous studies, and we add the adjective “relative” to emphasize that they may not be apparent in the total field. Similar zonal jet and RRGs are obtained also in the idealized model with a rectangular basin and a flat bottom with a horizontal resolution of 1/6°. The northern RRG is generated by the injection of high potential vorticity (PV) created in the viscous sublayer of the western boundary current, indicating the importance of a no-slip boundary condition. Since there is no streamline with such high PV in the Sverdrup interior, the eastward current in the northern RRG region has to lose its PV anomaly by viscosity before connecting to the interior. In the setup stage this injection of high PV is carried out by many eddies generated from the instability of the western boundary current. This high PV generates the northern RRG, which induces the separation of the western boundary current and the formation of the zonal jet. In the equilibrium state, the anomalous high PV values created in the viscous sublayer are carried eastward in the northern flank of the zonal jet. The southern RRG is due to the classical Rhines–Young mechanism, where low PV values are advected northward within the western boundary inertial sublayer, and closed, PV-conserving streamlines form to the south of the Kuroshio Extension, allowing slow homogenization of the low PV anomalies. The westward-flowing southern branch of this southern RRG stabilizes the inertial western boundary current and prevents its separation in the northern half of the Sverdrup subtropical gyre, where the western boundary current is unstable without the stabilizing effect of the southern RRG. Therefore, in the equilibrium state, the southern RRG should be located just to the north of the center of the Sverdrup subtropical gyre, which is defined as the latitude of the Sverdrup streamfunction maximum. The zonal jet (the Kuroshio Extension) and the northern RRG gyre are formed to the north of the southern RRG. This is our central result. This hypothesis is confirmed by a series of sensitivity experiments where the location of the center of the Sverdrup subtropical gyre is changed without changing the boundaries of the subtropical gyre. The locations of the zonal jets in the observed Kuroshio Current System and Gulf Stream are consistent as well. Sensitivities of the model Kuroshio Current System are also discussed with regard to the horizontal viscosity, strength of the wind stress, and coastline.  相似文献   
56.
Field surveys on atmospheric deposition and stream water chemistry were conducted in an evergreen forest in northeastern Thailand characterized by a tropical savanna climate with distinct dry and wet seasons. Atmospheric deposition of ion constituents by throughfall and stemflow was shown to increase in the beginning and end of the wet season, reflecting the precipitation pattern. The pH and electrical conductivity of stream water increased with alkalinity and base cation concentrations due to mineralization of organic matter by the first rain and retention of anions in soil during the start of the wet season. After initial alkalinization, the pH and alkalinity declined rapidly with the highest SO42? concentration displayed in the middle towards the end of the wet season. The magnitude of peaks in SO42? concentration (13.5–60.6 μmolc/L) reflects deposition during the first 2 months of the wet season (March and April) in respective years (60.8–170 molc/ha). Release of SO42? with H+, which is retained in soil during the early wet season, may cause acidification later in the season. The deposition and concentration of SO42? declined over 6 years. However, the pH of stream water declined with increasing concentrations of SO42? and other major ions. The release of materials accumulated in the ecosystem was facilitated by the decrease in SO42? concentration/deposition and increased precipitation in the middle–late wet season. The retention‐release cycle of SO42? largely contributed to both seasonal and interannual variations in stream water chemistry in the tropical savanna climate studied.  相似文献   
57.

The mechanism that controls particulate organic carbon (POC) flux in the deep sea differs depending on the season and sea. The POC produced in the western subarctic North Pacific are known to be transported to the deep sea efficiently, but the direct relationship between the POC flux and physical processes is still unclear. In this study, we evaluated the effect of mesoscale eddies on POC flux in the western subarctic North Pacific. The seasonal and interannual variabilities of POC flux were investigated using data from a time-series sediment trap deployed at 4810 m at station K2 (47°N, 160°E) from 2005 to 2018. POC flux was high during May–November, appearing to reflect spring and fall blooms at the ocean surface. POC flux also showed interannual variability, with twelve peaks that were mostly affected by enhanced bloom just before the peak. Nine peaks of the twelve peaks were affected by mesoscale eddies, which enhanced bloom around K2 by extending the area with a high chlorophyll-a concentration along the coastal region into the offshore region, suggesting that mesoscale eddies strongly impact the interannual variability of POC flux at K2.

  相似文献   
58.
Abstract The central part of the Kokchetav Massif is exposed in the Chaglinka–Kulet area, northern Kazakhstan. The ultrahigh-pressure–high-pressure (UHP–HP) metamorphic belt in this area is composed of four subhorizontal lithological units (Unit I–IV) metamorphosed under different pressure–temperature (P–T) conditions. The coesite- and diamond-bearing Unit II, which consists mainly of whiteschist and eclogite blocks, is tectonically sandwiched between the amphibolite-dominant Unit I on the bottom and the orthogneiss-dominant Unit III on the top. Total combined thickness of these units is less than 2 km. The rocks of the UHP–HP metamorphic belt are affected by at least four deformational events post-dating peak metamorphism: (i) The earliest penetrative deformation is characterized by non-coaxial ductile flow in a NW–SE direction. The shear sense indicators in oriented samples from Unit I provide consistent top-to-the-northwest motions and those from Unit III provide top-to-the-southeast, south or south-west motions; (ii) Upright folds with subhorizontal enveloping surface refold earlier foliations including shear-indicators throughout the metamorphic belt; (iii) The third stage of deformation is denoted by large-scale bending around a subvertical axis; and (iv) Late localized fault (or shear) zones cut all earlier structures. The fault zones have subvertical shear planes and their displacements are essentially strike-slip in manner. The subhorizontal structure and opposite shear directions between Unit I and Unit III during the earlier deformation stage suggest north-westward extrusion of UHP Unit II.  相似文献   
59.
Study on the carbonate content and oxygen isotope of a sediment section in Dabusu Lake revealed that this region has experienced several cold-wet and warm-dry climatic cycles since 15400 a BP. It was about 6740 a BP when the climate in the region reached a relatively stable warm stage, so that the lake water was gradually condensed and finally a saline lake was formed.  相似文献   
60.
Classification of Tsunami and Evacuation Areas   总被引:3,自引:2,他引:1  
On March 11, 2011, a large earthquake that occurred offshore the north-east coast of Japan generated a large tsunami which devastated extensive areas of the Tohoku coastline. Despite Japan being considered a country well prepared for these types of disasters, large casualties were recorded, with numerous discussions amongst the Japanese coastal engineering community ensuing. As a result, two different levels of tsunamis have been proposed and now recognized in Japan, depending on the frequency of such extreme events. The idea that hard measures can protect the lives of inhabitants of coastal areas has been abandoned, and these measures are only considered to be effective in protecting properties against the more frequent but lower magnitude events. Soft measures should always be used to protect against the loss of lives, and to this respect, the authors of the paper propose the introduction of a Classification of Evacuation Areas, to show which of these should be prioritized by residents as they seek to evacuate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号