首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   180篇
  免费   4篇
  国内免费   1篇
测绘学   12篇
大气科学   8篇
地球物理   55篇
地质学   33篇
海洋学   32篇
天文学   34篇
综合类   6篇
自然地理   5篇
  2022年   2篇
  2021年   3篇
  2020年   1篇
  2018年   3篇
  2017年   5篇
  2016年   7篇
  2015年   3篇
  2014年   3篇
  2013年   7篇
  2012年   3篇
  2011年   10篇
  2010年   7篇
  2009年   13篇
  2008年   15篇
  2007年   12篇
  2006年   13篇
  2005年   9篇
  2004年   8篇
  2003年   4篇
  2002年   6篇
  2001年   3篇
  2000年   3篇
  1999年   4篇
  1998年   5篇
  1997年   6篇
  1996年   4篇
  1995年   1篇
  1994年   6篇
  1992年   2篇
  1989年   1篇
  1988年   4篇
  1987年   1篇
  1986年   1篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1973年   2篇
  1972年   1篇
  1964年   1篇
排序方式: 共有185条查询结果,搜索用时 15 毫秒
21.
Hydrographic and biogeochemical observations were conducted along the longitudinal section from Ise Bay to the continental margin (southern coast of Japan) to investigate changes according to the Kuroshio path variations during the summer. The strength of the uplift of the cold deep water was influenced by the surface intrusion of the Kuroshio water to the shelf region. When the intrusion of the Kuroshio surface water to the shelf region was weak in 2006, the cold and NO3-rich shelf water intruded into the bottom layer in the bay from the shelf. This bottom intrusion was intensified by the large river discharge. The nitrogen isotope ratio (δ15N) of NO3 (4–5‰) in the bottom bay water was same as that in the deeper NO3 over the shelf, indicating the supply of new nitrogen to the bay. The warm and NO3-poor shelf water intruded into the middle layer via the mixing region at the bay mouth when the Kuroshio water distributed in the coastal areas off Ise Bay in 2005. The regenerated NO3 with isotopically light nitrogen (δ15N=−1‰) was supplied from the shelf to the bay. This NO3 is regenerated by the nitrification in the upper layer over the shelf. The contribution rate of regenerated NO3 over the shelf to the total NO3 in the subsurface chlorophyll maximum layer in the bay was estimated at 56% by a two-source mixing model coupled with the Rayleigh equation.  相似文献   
22.
Three surface sediments and two sediment cores were collected from the Gulf of Alaska, Bering Sea and Chukchi Sea, and analysed for persistent organochlorines (OCs). The geographical distributions of OCs showed different patterns according to their physicochemical properties. The concentrations of HCHs and HCB revealed rather uniform distribution, suggesting their more transportable nature in long-range atmospheric transport. On the other hand, DDTs and PCBs were predicted to be less transportable via the atmosphere due to the decreasing trends of residue levels in sediments from south to north. The OC profiles in the sediment core from the Gulf of Alaska which seemed to be preserved without turbation revealed the elevated residue levels from bottom to surface layers. This implies that the aerial inputs of OCs in the cold ocean are still continuing significantly. The accumulation rates of OCs into sediments were rather smaller than the atmospheric inputs, indicating that the residue levels in water bodies are unlikely to decrease rapidly in the near future.  相似文献   
23.
In order to accelerate the spherical harmonic synthesis and/or analysis of arbitrary function on the unit sphere, we developed a pair of procedures to transform between a truncated spherical harmonic expansion and the corresponding two-dimensional Fourier series. First, we obtained an analytic expression of the sine/cosine series coefficient of the \(4 \pi \) fully normalized associated Legendre function in terms of the rectangle values of the Wigner d function. Then, we elaborated the existing method to transform the coefficients of the surface spherical harmonic expansion to those of the double Fourier series so as to be capable with arbitrary high degree and order. Next, we created a new method to transform inversely a given double Fourier series to the corresponding surface spherical harmonic expansion. The key of the new method is a couple of new recurrence formulas to compute the inverse transformation coefficients: a decreasing-order, fixed-degree, and fixed-wavenumber three-term formula for general terms, and an increasing-degree-and-order and fixed-wavenumber two-term formula for diagonal terms. Meanwhile, the two seed values are analytically prepared. Both of the forward and inverse transformation procedures are confirmed to be sufficiently accurate and applicable to an extremely high degree/order/wavenumber as \(2^{30}\,{\approx }\,10^9\). The developed procedures will be useful not only in the synthesis and analysis of the spherical harmonic expansion of arbitrary high degree and order, but also in the evaluation of the derivatives and integrals of the spherical harmonic expansion.  相似文献   
24.
Exposure of the ca. 6 Ma Taitao ophiolite, Chile, located 50 km south of the Chile Triple Junction, allows detailed chemical and isotopic study of rocks that were recently extracted from the depleted mantle source of mid-ocean ridge basalts (DMM). Ultramafic and mafic rocks are examined for isotopic (Os, Sr, Nd, and O), and major and trace element compositions, including the highly siderophile elements (HSE). Taitao peridotites have compositions indicative of variable extents of partial melting and melt extraction. Low δ18O values for most whole rock samples suggest some open-system, high-temperature water–rock interaction, most likely during serpentinization, but relict olivine grains have δ18O values consistent with primary mantle values. Most of the peridotites analyzed for Nd–Sr isotopes have compositions consistent with estimates for the modern DMM, although several samples are characterized by 87Sr/86Sr and 143Nd/144Nd indicative of crustal contamination, most likely via interactions with seawater. The peridotites have initial 187Os/188Os ratios that range widely from 0.1168 to 0.1288 (γOs = −8.0 to +1.1), averaging 0.1239 (γOs = −2.4), which is comparable to the average for modern abyssal peridotites. A negative correlation between the Mg# of relict olivine grains and Os isotopic compositions of whole rock peridotites suggests that the Os isotopic compositions reflect primary mantle Re/Os fractionation produced by variable extents of partial melting at approximately 1.6 Ga. Recent re-melting at or near the spatially associated Chile Ridge further modified these rocks, and Re, and minor Pt and Pd were subsequently added back into some rocks by late-stage melt–rock or fluid–rock interactions.In contrast to the peridotites, approximately half of the mafic rocks examined have whole rock δ18O values within the range of mantle compositions, and their Nd and Sr isotopic compositions are all generally within the range of modern DMM. These rocks have initial 187Os/188Os ratios, calculated for 6 Ma, that range from 0.126 (γOs = −1) to as high as 0.561 (γOs = +342). The Os isotopic systematics of each of these rocks may reflect derivation from mixed lithologies that include the peridotites, but may also include pyroxenites with considerably more radiogenic Os than the peridotites. This observation supports the view that suprachondritic Os present in MORB derives from mixed mantle source lithologies, accounting for some of the worldwide dichotomy in 187Os/188Os between MORB and abyssal peridotites.The collective results of this study suggest that this >500 km3 block of the mantle underwent at least two stages of melting. The first stage occurred at 1.6 Ga, after which the block remained isolated and unmixed within the DMM. A final stage of melting recently occurred at or near the Chile Ridge, resulting in the production of at least some of the mafic rocks. Convective stirring of this mantle domain during a >1 Ga period was remarkably inefficient, at least with regard to Os isotopes.  相似文献   
25.
We describe in detail the deformation structures and textures of a large-scale landslide body that developed in the Betto-dani Valley in northern central Japan. We studied the shape-preferred orientation of clasts and clay flakes and the development of internal shear planes within the slip zone of the landslide. The slip has an average rate of 5–10 cm/year under the overburden pressure of approximately 1.6 MPa; these values are similar to those of the proto-decollement zone of the Nankai accretionary prism in SW Japan. The anisotropy of magnetic susceptibility of samples obtained from the slip zone reveals that the long axes of clay flakes define an imbricate structure. The slip was due to a long-term periodical creep, which occurs during the thaw seasons with an average slip rate of 0.16–0.32 μm/min. During the creep, the long axes of grains including clay flakes in the slip zone are developed from parallel to perpendicular to the slip direction. The observed textures provide a clue to elucidate the deformation textures and process in the decollement zone of the Nankai prism.  相似文献   
26.
A 6.2 m thick core of Gucheng Lake sediment provided a 3600 years record of climate change. The contents of the TOC in the core changed from 2.63% to 8.48%, and the δ13C values of organic matter were from −21.54% to −27.3%. The TOC/TN ratios indicated that the organic materials in sediments were from lake plankton and land-derived plants. The 2.9–22 m core interval with high TOC/TN ratios, low δ13C values and low contents of TOC indicated a cold climate stage. The 6.2–5.5 m and 0.4–0.1 m intervals were characterized by low TOC/TN ratios, high δ13C values and high contents of TOC, and reflected temperate climate stages. Project 49372129 supported by NSFC.  相似文献   
27.
We discuss in this paper possible roles of methane and carbon dioxide in geological processes on Mars. These volatiles in the martian crust may migrate upward from their sources either directly or via various traps (structural, sedimentary, ground ice, gas hydrates). They are then likely emitted to the atmosphere by seepage or through diverse vent structures. Though gas hydrates have never been directly detected on Mars, theoretical studies favor their presence in the crust and polar caps; they could have played an important role as significant gas reservoirs in the subsurface. The martian gas hydrates would possibly be a binary system of methane and carbon dioxide occupying clathrate cavities. Landforms such as mud volcanoes with well-known linkage to gas venting are extensively distributed on Earth, and methane is the primary gas involved. Thus, identification of these landforms on Mars could suggest that methane and possibly carbon dioxide have contributed to geological processes of the planet. For example, we present a newly identified field in Chryse Planitia where features closely resembling terrestrial mud volcanoes occur widely, though with no observable activity. We also present results of a preliminary search for possible recent or present-day, methane-emission zones in the regions over which enrichments of atmospheric methane have been reported.  相似文献   
28.
Integrated geological, geochemical, and geophysical exploration since 2004 has identified massive accumulation of gas hydrate associated with active methane seeps on the Umitaka Spur, located in the Joetsu Basin on the eastern margin of Japan Sea. Umitaka Spur is an asymmetric anticline formed along an incipient subduction zone that extends throughout the western side of the Japanese island-arc system. Seismic surveys recognized chimney structures that seem strongly controlled by a complex anticlinal axial fault system, and exhibit high seismic amplitudes with apparent pull-up structures, probably due to massive and dense accumulation of gas hydrate. Bottom simulating reflectors are widely developed, in particular within gas chimneys and in the gently dipping eastern flank of the anticline, where debris can store gas hydrates that may represent a potential natural gas resource. The axial fault system, the shape of the anticline, and the carrier beds induce thermogenic gas migration to the top of the structure, and supply gas to the gas hydrate stability zone. Gas reaching the seafloor produces strong seepages and giant plumes in the sea water column.  相似文献   
29.
The geochemical study of groundwaters and core sediments from the Old Brahmaputra plain of Bangladesh was conducted to investigate the distribution of arsenic and related trace elements. Groundwaters from tube wells are characterized by pH of 6.4–7.4, dissolved oxygen (DO) of 0.8–1.8 mg/l, Ca contents of 5–50 mg/l, and Fe contents of 0.2–12.9 mg/l. Arsenic concentrations ranged from 8 to 251 μg/l, with an average value of 63 μg/l. A strong positive correlation exists between As and Fe (r 2 = 0.802; p = 0.001) concentrations in groundwater. The stratigraphic sequences in the cores consist of yellowish silty clays at top, passing downward into grayish to yellowish clays and sands. The uppermost 3 m and lower parts (from 13 to 31 m) of the core sediments are oxidized (average oxidation reduction potential (ORP) +170 and +220 mV, respectively), and the ORP values gradually become negative from 3 to 13 m depths (−35 to −180 mV), indicating that anoxic conditions prevail in the shallow aquifers of the Brahmaputra plain. Age determinations suggest that clay horizons at ~10 m depth were deposited at around 2,000 and 5,000 years BP (14C ages) during the transgressive phase of sea-level change. Elevated concentrations of As, Pb, Zn, Cu, Ni, Cr, and V are present in the silts and clays, probably due to adsorption onto clay particles. Significant concentrations of As occur in black peat and peaty sediments at depths between 9 and 13 m. A strong positive correlation between As and Fe was found in the sediments, indicating As may be adsorbed onto Fe oxides in aquifer sediments.  相似文献   
30.
Supplies of conventional natural gas and oil are declining fast worldwide, and therefore new, unconventional forms of energy resources are needed to meet the ever-increasing demand. Amongst the many different unconventional natural resources are gas hydrates, a solid, ice-like crystalline compound of methane and water formed under specific low temperature and high pressure conditions. Gas hydrates are believed to exist in large quantities worldwide in oceanic regions of continental margins, as well as associated with permafrost regions in the Arctic. Some studies to estimate the global abundance of gas hydrate suggest that the total volume of natural gas locked up in form of gas hydrates may exceed all known conventional natural gas reserves, although large uncertainties exist in these assessments. Gas hydrates have been intensively studied in the last two decades also due to connections between climate forcing (natural and/or anthropogenic) and the potential large volumes of methane trapped in gas hydrate accumulations. The presence of gas hydrate within unconsolidated sediments of the upper few hundred meters below seafloor may also pose a geo-hazard to conventional oil and gas production. Additionally, climate variability and associated changes in pressure-temperature regimes and thus shifts in the gas hydrate stability zone may cause the occurrence of submarine slope failures.Several large-scale national gas hydrate programs exist especially in countries such as Japan, Korea, Taiwan, China, India, and New Zealand, where large demands of energy cannot be met by domestic supplies from natural resources. The past five years have seen several dedicated deep drilling expeditions and other scientific studies conducted throughout Asia and Oceania to understand gas hydrates off India, China, and Korea. This thematic set of publications is dedicated to summarize the most recent findings and results of geo-scientific studies of gas hydrates in the marginal seas and continental margin of the Asia, and Oceania region.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号