首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   532篇
  免费   25篇
  国内免费   13篇
测绘学   6篇
大气科学   37篇
地球物理   166篇
地质学   192篇
海洋学   45篇
天文学   86篇
自然地理   38篇
  2024年   2篇
  2023年   6篇
  2022年   6篇
  2021年   25篇
  2020年   27篇
  2019年   19篇
  2018年   41篇
  2017年   28篇
  2016年   23篇
  2015年   31篇
  2014年   29篇
  2013年   41篇
  2012年   23篇
  2011年   30篇
  2010年   26篇
  2009年   28篇
  2008年   19篇
  2007年   16篇
  2006年   17篇
  2005年   15篇
  2004年   13篇
  2003年   8篇
  2002年   12篇
  2001年   2篇
  2000年   6篇
  1999年   4篇
  1998年   1篇
  1997年   5篇
  1996年   7篇
  1995年   8篇
  1994年   3篇
  1993年   6篇
  1992年   4篇
  1991年   3篇
  1990年   4篇
  1989年   2篇
  1988年   4篇
  1987年   4篇
  1986年   3篇
  1985年   6篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1980年   2篇
  1978年   1篇
  1976年   1篇
  1973年   1篇
  1971年   1篇
  1970年   2篇
排序方式: 共有570条查询结果,搜索用时 15 毫秒
561.
A study of the hydrologic effects of catchment change from pasture to plantation was carried out in Gatum, south‐western Victoria, Australia. This study describes the hydrologic characteristics of two adjacent catchments: one with 97% grassland and the other one with 62% Eucalyptus globulus plantations. Streamflow from both catchments was intermittent during the 20‐month study period. Monthly streamflow was always greater in the pasture‐dominated catchment compared with the plantation catchment because of lower evapotranspiration in the pasture‐based catchment. This difference in streamflow was also observed even during summer 2010/2011 when precipitation was 74% above average (1954–2012) summer rainfall. Streamflow peaks in the plantation‐based catchment were smaller than in the pasture‐dominated system. Flow duration curves show differences between the pasture and plantation‐dominated catchments and affect both high‐flow and low‐flow periods. Groundwater levels fell (up to 4.4 m) in the plantation catchment during the study period but rose (up to 3.2 m) in the pasture catchment. Higher evapotranspiration in the plantation catchment resulted in falling groundwater levels and greater disconnection of the groundwater system from the stream, resulting in lower baseflow contribution to streamflow. Salt export from each catchment increases with increasing flow and is higher at the pasture catchment, mainly because of the higher flow. Reduced salt loading to streams due to tree planting is generally considered environmentally beneficial in saline areas of south‐eastern Australia, but this benefit is offset by reduced total streamflow. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
562.
Elevations on Earth are dominantly controlled by crustal buoyancy, primarily through variations in crustal thickness: continents ride higher than ocean basins because they are underlain by thicker crust. Mountain building, where crust is magmatically or tectonically thickened, is thus key to making continents. However, most of the continents have long passed their mountain building origins, having since subsided back to near sea level. The elevations of the old, stable continents are lower than that expected for their crustal thicknesses, requiring a subcrustal component of negative buoyancy that develops after mountain building. While initial subsidence is driven by crustal erosion, thermal relaxation through growth of a cold thermal boundary layer provides the negative buoyancy that causes continents to subside further. The maximum thickness of this thermal boundary layer is controlled by the thickness of a chemically and rheologically distinct continental mantle root, formed during large-scale mantle melting billions of years ago. The final resting elevation of a stabilized continent is controlled by the thickness of this thermal boundary layer and the temperature of the Earth’s mantle, such that continents ride higher in a cooler mantle and lower in a hot mantle. Constrained by the thermal history of the Earth, continents are predicted to have been mostly below sea level for most of Earth’s history, with areas of land being confined to narrow strips of active mountain building. Large-scale emergence of stable continents occurred late in Earth’s history (Neoproterozoic) over a 100–300 million year transition, irreversibly altering the surface of the Earth in terms of weathering, climate, biogeochemical cycling and the evolution of life. Climate during the transition would be expected to be unstable, swinging back and forth between icehouse and greenhouse states as higher order fluctuations in mantle dynamics would cause the Earth to fluctuate rapidly between water and terrestrial worlds.  相似文献   
563.
A re-investigation of the Rb-Sr isotope systematics of early Archaean granodiorite gneisses from Hebron, northern Labrador, confirms the existence of early Archaean crust in that area, but has failed to corroborate both the high degree of coherence and the high initial87Sr/86Sr reported by Barton [1]. Instead, marked geological scatter is observed in the data for both slabbed gneisses and large bulk samples, a scatter unequivocally due to the development of secondary whole-rock isochrons at ~ 1800 Ma.Regression analysis of the new data gives very large uncertainties in the age and initial87Sr/86Sr because of this secondary disturbance, viz. 3645?470+875 Ma and 0.702+0.005?0.009. We interpret the previous indications of high initial87Sr/86Sr at 3600 Ma as due to chance.The Hebron data cannot be distinguished from similar populations of geologically-disturbed Rb-Sr results from the Uivak I gneisses to the north [5] and the Amîtsoq grey gneisses [6]. This supports a field-based contention that the so-called “Hebron gneisses” are both lithologic and stratigraphic equivalents of the Uivak I gneisses.  相似文献   
564.
Groundwater resources of the Republic of the Maldives are threatened by a variety of factors including variable future rainfall patterns, continued population growth and associated pumping demands, rising sea level, and contamination from the land surface. This study assesses changes in groundwater availability due to variable rainfall patterns and sea level rise (SLR) in the coming decades, a key component of water resources management for the country. Using a suite of two‐dimensional density‐dependent groundwater flow models, time‐dependent thickness of the freshwater lens is simulated for a range of island sizes (200 to 1,100 m) during the time period of 2011 to 2050, with recharge to the freshwater lens calculated using rainfall patterns provided by general circulation models for the three distinct geographic regions of the Maldives. The effect of SLR on the freshwater lens is quantified using estimates of shoreline recession and associated decreases in island width. If rainfall is solely considered, groundwater availability is projected to increase, as lens thickness during the 2031–2050 time periods is slightly greater (1–5%) than during the 2011–2030 time period. However, including the impact of SLR indicates an overall decrease in lens thickness, with drastic decreases (60% to 100%) projected for small islands (200 m) and moderate decreases (12% to 14%) expected for 400 m islands, which accommodate one third of the national population. Similar methodologies can be used for other atoll island nations, such as the Republic of Marshall Islands, Federated States of Micronesia, and the Republic of Kiribati. For the Maldives, results from this study can be used in conjunction with population growth estimates to determine the feasibility of including groundwater in water resources planning and management for the country.  相似文献   
565.
Soil water repellency induced by wildfires can alter hydraulic properties and hydrologic processes; however, the persistence and vertical position (i.e., depth) of water-repellent layers can vary between systems and fires, with limited understanding of how those variations affect infiltration processes. This study occurred in two forested locations in the south-central Appalachian Mountains that experienced wildfires in late 2016: Mount Pleasant Wildfire Refuge, Virginia, and Chimney Rock State Park, North Carolina. In each location, sites were selected to represent unburned conditions and low to moderate burn intensities. At each site, we measured the soil water repellency at the surface (ash layer or O horizon) and ~2 cm below the surface (A horizon) using the water drop penetration time method (n = 10–14). Soil water content was also measured over the upper 10 cm of the soil (n = 10), and infiltration tests were conducted using a tension infiltrometer (n = 6–8). The results showed that soil repellency was highest in the surface layer at the Mount Pleasant location and was highest in the subsurface layer at the Chimney Rock location. Soil water content was lower in unburned soil than in burned soil, especially for measurements taken immediately postfire, with soil water content negatively correlated with water repellency. Water repellency in the surface layer significantly reduced relative infiltration rates (estimated as differences between initial and steady-state rates), whereas subsurface water repellency did not affect relative infiltration. As a result, water repellency persisted longer in sites with surface as opposed to subsurface water repellency. Finally, differences between burned and unburned sites showed that although the wildfires increased the occurrence of water repellency, they did not alter the underlying relationship between relative infiltration and water repellency of the surface soil.  相似文献   
566.
Evapotranspiration (ET) from riparian vegetation can be difficult to estimate due to relatively abundant water supply, spatial vegetation heterogeneity, and interactions with anthropogenic influences such as shallower groundwater tables, increased salinity, and nonpoint source pollution induced by irrigation. In semiarid south-eastern Colorado, reliable ET estimates are scarce for the riparian corridor that borders the Arkansas River. This work investigates relationships between the riparian ecosystem along the Arkansas River and an underlying alluvial aquifer using ET estimates from remotely sensed data and modelled water table depths. Results from a calibrated, finite-difference groundwater model are used to estimate weekly water table fluctuations in the riparian ecosystem from 1999 to 2009, and estimates of ET are calculated using the Operational Simplified Surface Energy Balance (SSEBop) model with over 200 Landsat scenes covering over 30 km2 of riparian ecosystem along a 70-km stretch of the river. Comparison of calculated monthly SSEBop ET to estimated alfalfa reference ET from local micrometeorological station data indicated statistically significant high linear correspondence (R2 = .87). Daily calculated SSEBop ET showed statistically significant moderate linear correspondence with data from a local weighing lysimeter (R2 = .59). Simulated monthly SSEBop ET values were larger in drier years compared with wetter years, and ET variability was also larger in drier years. Peak ET most commonly occurred during the month of June for all 11 years of analysis. Relationships between ET and water table depth showed that peak monthly ET was highest when groundwater depths were less than about 3 m, and ET values were significantly lower for groundwater depths greater than 3 m. Negative sample Spearman correlation highlighted riparian corridor locations where ET increased as a result of decreased groundwater depths across years with different hydroclimatic conditions. This study shows how a combination of remotely sensed riparian ET estimates and a regional groundwater model can improve our understanding of linkages between riparian consumptive use and near-river groundwater conditions influenced by irrigation return flow and different climatic drivers.  相似文献   
567.
Abstract

The ability to map and monitor terrestrial carbon is important in tropical regions where land conversion is intense and tropical moist forests store much of Earth's terrestrial carbon. The release of terrestrial carbon in the form of carbon dioxide could alter local, regional, and global weather, and enhance the greenhouse effect. This study analyzed the ability of coarse‐resolution Advanced Very High Resolution Radiometer (AVHRR) remote sensor data to quantify carbon stored in the Guaporé / Itenez River Basin in Bolivia and Brazil. This area was selected because of the amount of land conversion that has occurred there relative to other areas of the Amazon Basin. A supervised vegetation classification map was created with training sites acquired through fieldwork done in the area in summer 1998. Image pixels were classified as tropical moist forest, degraded tropical moist forest, cerrado, grasslands, degraded savanna, or bare ground. Estimated above and below‐ground carbon values of the different land cover types were applied to each class to calculate total carbon values. It was concluded that data such as AVHRR may be used to calculate the amount of carbon in terrestrial ecosystems in regional scale areas.  相似文献   
568.
569.
Stellar-mass black holes (BHs) are expected to segregate and form a steep density cusp around supermassive black holes (SMBHs) in galactic nuclei. We follow the evolution of a multimass system of BHs and stars by numerically integrating the Fokker–Planck energy diffusion equations for a variety of BH mass distributions. We find that the BHs 'self-segregate', and that the rarest, most massive BHs dominate the scattering rate closest to the SMBH  (≲10−1 pc)  . BH–BH binaries form out of gravitational wave emission during BH encounters. We find that the expected rate of BH coalescence events detectable by Advanced LIGO is  ∼1–102 yr−1  , depending on the initial mass function of stars in galactic nuclei and the mass of the most massive BHs. We find that the actual merger rate is likely ∼10 times larger than this due to the intrinsic scatter of stellar densities in many different galaxies. The BH binaries that form this way in galactic nuclei have significant eccentricities as they enter the LIGO band (90 per cent with   e > 0.9  ), and are therefore distinguishable from other binaries, which circularize before becoming detectable. We also show that eccentric mergers can be detected to larger distances and greater BH masses than circular mergers, up to  ∼700 M  . Future ground-based gravitational wave observatories will be able to constrain both the mass function of BHs and stars in galactic nuclei.  相似文献   
570.
 The platinum-group elements (PGE) in base metal sulfides (BMS) of the Merensky reef are mostly close to the detection limit of the proton microprobe. The only phase that accommodates appreciable PGE is pentlandite. Total average PGE plus Au grades of the sulfide fraction of the Merensky reef are about 500 ppm. We estimate the modal proportions of the major BMS to be around 53 percent pyrrhotite, 25 percent pentlandite, and 22 percent chalcopyrite (ignoring minor phases). Using this estimate, we calculate by how much the sulfides are oversaturated with respect to individual PGE. With respect to Pt, the sulfides are many times oversaturated, i.e., nearly all Pt occurs as discrete PGE phases. With regard to Pd the sulfides are oversaturated by about a factor of two. The Ru and Rh levels are at and below saturation levels. Available experiments suggest that the entire PGE content of the sulfide fraction can easily be accommodated in solid solution in BMS at temperatures as low as 500°C. The fact that the BMS are oversaturated with most PGE thus indicates that the sulfides have continued to exsolve PGE below that temperature. Calculated sulfur fugacities indicate that f S2 is controlled by silica activity, as expected in high-temperature ores, suggesting that metal/sulfur ratios of the ore may not have changed much since complete solidification of the intercumulus silicate melt of the Merensky reef. All sulfides investigated have cooled below the maximum temperature of pentlandite-pyrite coexistence, which experiments place at 250±30°C. Final closure temperatures of the sulfide-PGE mineral assemblages, approximated by extrapolating the pentlandite-pyrrhotite solvus beyond its experimentally determined range, are possibly as low as 80 to 90°C. Received: 25 April 1995/Accepted: 5 September 1995  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号