首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   572篇
  免费   44篇
  国内免费   13篇
测绘学   11篇
大气科学   46篇
地球物理   185篇
地质学   212篇
海洋学   50篇
天文学   87篇
自然地理   38篇
  2023年   6篇
  2022年   6篇
  2021年   27篇
  2020年   29篇
  2019年   20篇
  2018年   42篇
  2017年   33篇
  2016年   27篇
  2015年   33篇
  2014年   29篇
  2013年   44篇
  2012年   25篇
  2011年   30篇
  2010年   28篇
  2009年   29篇
  2008年   22篇
  2007年   18篇
  2006年   18篇
  2005年   16篇
  2004年   14篇
  2003年   10篇
  2002年   13篇
  2001年   2篇
  2000年   6篇
  1999年   5篇
  1998年   2篇
  1997年   6篇
  1996年   9篇
  1995年   8篇
  1994年   3篇
  1993年   6篇
  1992年   4篇
  1991年   4篇
  1990年   5篇
  1989年   2篇
  1988年   4篇
  1987年   4篇
  1986年   3篇
  1985年   8篇
  1983年   4篇
  1982年   4篇
  1980年   3篇
  1978年   2篇
  1976年   2篇
  1970年   2篇
  1969年   1篇
  1968年   2篇
  1967年   1篇
  1966年   1篇
  1958年   1篇
排序方式: 共有629条查询结果,搜索用时 15 毫秒
601.
Multiscale edge detection (MSED), using wavelet transform extrema, provides a robust method to compress the information in a transient signal. We apply this to gamma-ray burst (GRB) time series. Multiscale edge detection can be used to quantify the variability, identify structures (e.g. FREDs), and suppress noise. We present preliminary results of MSED applied to BATSE 64ms discsc data.  相似文献   
602.
The Ernest Henry Fe oxide Cu–Au (IOCG) deposit (>ca. 1.51 Ga) is hosted by breccia produced during the waning stages of an evolving hydrothermal system that formed a number of tens of metres to a kilometre scale, pre- and syn-ore alteration halos, although no demonstrable patterns have been attributed to fluids expelled through the outflow zones. However, the recognition of a population of hypersaline fluid inclusions representing the ‘spent’ fluids after Cu–Au deposition at Ernest Henry provides the basis to model the geochemical characteristics of the deposit's outflow zones. Geochemical modeling at 300 °C was undertaken at both high and low fluid/rock ratios via FLUSH models involving three host rock types: (1) granite, (2) calc–silicate rock, and (3) graphitic schist. In models run at high fluid/rock ratios, all rock types are essentially fluid-buffered, and produce an albite–quartz–hematite–barite-rich assemblage, although in low fluid–rock environments, the pH, redox, and geochemical character of the host rock exerts a greater influence on the mineralogy of the alteration assemblages (e.g., andradite, Fe–chlorite, and magnetite). Significant sulphide mineralization was predicted in graphitic schist where sphalerite occurred in both low- and high-porosity models, which indicates the possibility of an association between high-temperature IOCG mineralization and lower temperature base metal mineralization.Cooling experiments (from 300 to 100 °C) using the ‘spent fluids’ predict early high-T (300–200 °C) Na-, Ca-, Fe-, and Mn-rich, magnetite-bearing hydrothermal associations, whereas with cooling to below 200 °C, and with progressive fluid–rock interaction, the system produces rhodochrosite-bearing, hematite–quartz–muscovite–barite-rich assemblages. These results show that the radical geochemical and mineralogical changes associated with cooling and progressive fluid influx are likely to be accompanied by major transformations in the geophysical expression (e.g., spectral and magnetic character) of the alteration in the outflow zone, and highlight the potential link between magnetite- and hematite-bearing IOCG hydrothermal systems.  相似文献   
603.
The Levant Rift system is an elongated series of structural basins that extends for more than 1000 km from the northern Red Sea to southern Anatolia. The system consists of three major segments, the Jordan Rift in the south, El Gharb–Kara-Su Rift in the north, and the Lebanese Fault splay in between. The rifted parts of this structural system are accompanied by intensively uplifted margins that mirror-image the basinal pattern, namely, the deeper the basin—the higher its margins, and vice versa. Uplifts also occur along the fault splay section. The Jordan Rift comprises axial basins that diminish in size from the south northwards, and are separated from each other by shallow threshold zones along the axis of the rift, where the margins are also subdued. The Lebanese Fault splay consists of five faults that emerge from the northern edge of the Jordan Rift and trend like a fan between the north and the northeast. One of these faults connects the Jordan and El Gharb–Kara-Su rifts. The Levant Rift and its uplifted margins started to develop in the middle-late Miocene, and most of the structural development occurred in the Plio-Pleistocene.The Levant Rift system is characterized by its oblique displacement, and evidence for both dip-slip and strike-slip displacement was measured on its faults. Earthquakes also indicate that same mixed pattern, some of them show strike-slip offset, and others normal. It is generally conceded that the amount of normal offset along the boundary faults of the Rift system reaches 8–10 km, but the lateral displacement is disputed, and offsets ranging from 11 to 107 km were suggested. Assessment of the available data led us to suggest that the sinistral offset along the Levant Rift system is approximately 10–20 km. The similarity between the vertical and the lateral displacements, the basin and threshold structural pattern of the Rift, model experiments in oblique rifting, as well as the significant tectonic resemblance to the Red Sea and the East African rifts, indicate that the Levant Rift is the product of continental breakup, and it is probably an emerging oceanic spreading center.  相似文献   
604.
The Paleoproterozoic metaplutonic rocks of the CaicóComplex Basement (Seridó region, NE Brazil) provide importantand crucial insights into the petrogenetic processes governingcrustal growth and may potentially be a proxy for understandingthe Archean–Proterozoic transition. These rocks consistof high-K calc-alkaline diorite to granite, with Rb–Sr,U–Pb, Pb–Pb and Sm–Nd ages of c. 2·25–2·15Ga. They are metaluminous, with high YbN, K2O/Na2O and Rb/Sr,low ISr ratios, and are large ion lithophile elements (LILE)enriched. Petrographic and geochemical data demonstrate thatthey belong to differentiated series that evolved by low-pressurefractionation, thus resulting in granodioritic liquids. We proposea model in which the petrogenesis of the Caicó Complexorthogneisses begins with partial melting of a metasomaticallyenriched spinel- to garnet-bearing lherzolite (with high-silicaadakite melt as the metasomatic agent), generating a basic magmathat subsequently evolved at depth through fractional crystallizationof olivine, followed by low-pressure intracrustal fractionation.A subduction zone setting is proposed for this magmatism, toaccount for both negative anomalies in high field strength elements(HFSE) and LILE enrichment. Mantle-derived juvenile magmatismwith the same age is also known in the São Franciscoand West Africa cratons, as well as in French Guyana, and thusthe Archean–Proterozoic transition marks a very importantcontinental accretion event. It also represents a transitionfrom slab-dominated (in the Archean) to wedge-dominated post-Archeanmagmatism. KEY WORDS: calc-alkaline; magmatism; NE Brazil; Paleoproterozoic; petrogenesis  相似文献   
605.
606.
We present an improved technique for calculating bulk densities of low-mass (<1 g) meteoroids using a scattering model applied to the high-density plasma formed around the meteoroid as it enters Earth’s atmosphere. These plasmas, referred to as head echoes, travel at or near the speed of the meteoroid, thereby allowing the determination of the ballistic coefficient (mass divided by physical cross-section), which depends upon speed and deceleration. Concurrently, we apply a scattering model to the returned signal strength of the head echo in order to correlate radar-cross-section (RCS) to plasma density and meteoroid mass. In this way, we can uniquely solve for the meteoroid mass, radius and bulk density independently. We have applied this new technique to head echo data collected in 2007 and 2008 simultaneously at VHF (160 MHz) and UHF (422 MHz) at ALTAIR, which is a high-power large-aperture radar located on the Kwajalein Atoll. These data include approximately 20,000 detections with dual-frequency, dual-polarization, and monopulse (i.e. angle) returns. From 2000 detections with the smallest monopulse errors, we find a mean meteoroid bulk density of 0.9 g/cm3 with observations spanning almost three orders of magnitude from 0.01 g/cm3 to 8 g/cm3. Our results show a clear dependence between meteoroid bulk density and altitude of head echo formation, as well as dependence between meteoroid bulk density and 3D speed. The highest bulk densities are detected at the lowest altitudes and lowest speeds. Additionally, we stipulate that the approximations used to derive the ballistic parameter, in addition to neglecting fragmentation, suggest that the traditional ballistic parameter must be used with caution when determining meteoroid parameters.  相似文献   
607.
James  Autumn C.  Alyasiri  Elaf  Howe  Matthew  James  Ryan D.  Jin  Yiwei  Lwanga  Kyagaba  McClain  Bailey  Moore  Andrea  Shao  Yaxiong  Valdez  Felipe 《GeoJournal》2021,87(2):281-292

This paper presents the experience of a service-learning course which used community geography to study a proposed research and community center in DeKalb, IL. The center was proposed as a jointly-developed project by the Northern Illinois University and local governmental entities. The original goal of the course was to explore the viability of the proposed project and solicit feedback from the community through traditional engaged planning and public participation. As students began interacting with university and residential communities, it became clear that both communities had input for the center, and found similarities in their experiences and perceptions. While noted divisions in interest groups are known in DeKalb, both communities found themselves surprisingly interested in meaningful discussion to better understand each other through their shared experiences. In response, our theoretical approach shifted to community geography. Students, university employees, and local residents introduced and analyzed questions together as researchers and participants, and developed recommendations to address shared concern. Students then prepared a report advocating for those concerns to submit to university and community leaders. Following the evolution of this project, this paper presents lessons learned and areas for application of community geography as a pedagogical technique, as an important component of geography curriculum, and as a research framework for town-gown relationship inquiry.

  相似文献   
608.
Yan  Wei  Birle  Emanuel  Cudmani  Roberto 《Acta Geotechnica》2021,16(10):3187-3208
Acta Geotechnica - A soil water characteristic curve (SWCC) model named as discrete-continuous multimodal van Genuchten model with a convenient parameter calibration method is developed to describe...  相似文献   
609.
610.
Elevations on Earth are dominantly controlled by crustal buoyancy, primarily through variations in crustal thickness: continents ride higher than ocean basins because they are underlain by thicker crust. Mountain building, where crust is magmatically or tectonically thickened, is thus key to making continents. However, most of the continents have long passed their mountain building origins, having since subsided back to near sea level. The elevations of the old, stable continents are lower than that expected for their crustal thicknesses, requiring a subcrustal component of negative buoyancy that develops after mountain building. While initial subsidence is driven by crustal erosion, thermal relaxation through growth of a cold thermal boundary layer provides the negative buoyancy that causes continents to subside further. The maximum thickness of this thermal boundary layer is controlled by the thickness of a chemically and rheologically distinct continental mantle root, formed during large-scale mantle melting billions of years ago. The final resting elevation of a stabilized continent is controlled by the thickness of this thermal boundary layer and the temperature of the Earth’s mantle, such that continents ride higher in a cooler mantle and lower in a hot mantle. Constrained by the thermal history of the Earth, continents are predicted to have been mostly below sea level for most of Earth’s history, with areas of land being confined to narrow strips of active mountain building. Large-scale emergence of stable continents occurred late in Earth’s history (Neoproterozoic) over a 100–300 million year transition, irreversibly altering the surface of the Earth in terms of weathering, climate, biogeochemical cycling and the evolution of life. Climate during the transition would be expected to be unstable, swinging back and forth between icehouse and greenhouse states as higher order fluctuations in mantle dynamics would cause the Earth to fluctuate rapidly between water and terrestrial worlds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号