首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2405篇
  免费   82篇
  国内免费   81篇
测绘学   87篇
大气科学   242篇
地球物理   534篇
地质学   833篇
海洋学   172篇
天文学   523篇
综合类   10篇
自然地理   167篇
  2023年   21篇
  2022年   21篇
  2021年   14篇
  2020年   18篇
  2019年   20篇
  2018年   78篇
  2017年   67篇
  2016年   116篇
  2015年   77篇
  2014年   87篇
  2013年   133篇
  2012年   107篇
  2011年   133篇
  2010年   117篇
  2009年   173篇
  2008年   135篇
  2007年   116篇
  2006年   119篇
  2005年   95篇
  2004年   98篇
  2003年   108篇
  2002年   73篇
  2001年   92篇
  2000年   69篇
  1999年   52篇
  1998年   62篇
  1997年   55篇
  1996年   52篇
  1995年   34篇
  1994年   44篇
  1993年   27篇
  1992年   30篇
  1991年   14篇
  1990年   14篇
  1989年   7篇
  1988年   13篇
  1987年   9篇
  1986年   7篇
  1985年   5篇
  1984年   10篇
  1983年   6篇
  1982年   6篇
  1980年   4篇
  1976年   2篇
  1974年   2篇
  1973年   3篇
  1972年   3篇
  1971年   2篇
  1970年   2篇
  1969年   2篇
排序方式: 共有2568条查询结果,搜索用时 453 毫秒
91.
In order to understand the significance of detrital grain ages in sedimentary basins, a new approach is presented. Five characteristic paths, identified by the change in age of detrital grain populations combined with the change in lagtime over time, can be related to different geodynamic settings in the source regions. When lagtime and grain age increase over time, a change in source must be invoked – this is usually a direct response to a geological event. A constant cooling age, a vertical path, associated implicitly with increasing lagtime, implies erosion of materials that had passed through the closure temperature rapidly – exhuming sufficient rock to supply detritus over the time of the path. Constant lagtimes, regardless of the lagtime itself, are indicative of thermochronological stability in the source region. This can involve fast or slow cooling. Finally, decreasing lagtimes support the notion of increasing cooling rates in the source regions over time. A test study is presented from sediments of the northern Ecuadorian Sub‐Andean Zone where geological events had previously been identified using alternative methods. The addition of heavy‐mineral studies increased the precision in the interpretation. At 90 Ma, rapidly decreasing lagtimes point to a phase of tectonic activity. From about 85 Ma until about 60 Ma the lagtimes were approximately zero. This represents a phase of rapid exhumation of the source regions correlating with the previously identified Pallatanga event. An associated increase of metamorphic minerals occurs over this time span, pointing to increased erosion from deeper horizons. At about 70 Ma, the oldest source region, the shield to the east, was switched off. This timing correlates with a change from marine to continental conditions in the basin, a change in palaeocurrent directions from the east to the west, as well as an associated influx of material from the growing Cordillera Real. At about 55 Ma, a change in source is identified by a change in slope of the lagtime curve together with a change in heavy minerals. From 50 to 35 Ma a renewed period of tectonism in the source region is correlated with the docking of the Macuchi terrane which clearly had an effect of increased erosion in the Cordillera Real bringing in higher grade metamorphic minerals. From about 32 Ma onwards the lagtime has been somewhat constant at about 30 Myr. This does not imply, however, a steady‐state environment as it is well known from other geological evidence that there have been other events within this time frame. One must be cautious about over‐interpreting the lagtime as a method to determine steady state in any region. It is a matter of scale.  相似文献   
92.
93.
94.
95.
Tree-ring cores of thick leaf spruce (Picea crassifolia) taken from four sites at different elevations, in the middle of the Qilian Mountains, in the arid and semi-arid region of northwestern China, were used to develop four tree-ring width chronologies using standard dendrochronological methods. Results indicate that with increasing altitude the chronologies’ year-to-year variations decreased. Hence, the sensitivity of the tree-ring chronologies to climate decreases with altitude. Further analysis showed that the significant limiting factor on tree growth is spring precipitation. Measurements of stomata density and leaf dry weight suggest the species’ ecological adaptation strategy changes with elevation. At high elevation the metabolic rate of thick leaf spruce decreases, thus showing the effect of the climate.  相似文献   
96.
97.
A hydrochemical investigation was conducted in the Ejina Basin to identify the hydrochemical characteristics and the salinity of groundwater. The results indicate that groundwater in the area is brackish and are significantly zonation in salinity and water types from the recharge area to the discharge area. The ionic ration plot and saturation index (SI) calculation suggest that the silicate rock weathering and evaporation deposition are the dominant processes that determine the major ionic composition in the study area. Most of the stable isotope δ18O and δD compositions in the groundwater is a meteoric water feature, indicating that the groundwater mainly sources from meteoric water and most groundwater undergoes a long history of evaporation. Based on radioactive isotope tritium (3H) analysis, the groundwater ages were approximately estimated in different aquifers. The groundwater age ranges from less than 5 years, between 5 years and 50 years, and more than 50 years. Within 1 km of the river water influence zone, the groundwater recharges from recent Heihe river water and the groundwater age is about less than 5 years in shallow aquifer. From 1 km to 10 km of the river water influence zone, the groundwater sources from the mixture waters and the groundwater age is between 5 years and 50 years in shallow aquifer. The groundwater age is more than 50 years in deep confined aquifer.  相似文献   
98.
Irregularly shaped (IRS) particles widely exist in many engineering and industrial fields. The macro physical and mechanical properties of the particle system are governed by the interaction between the particles in the system. The interaction between IRS particles is more complicated because of their complex geometric shape with extremely irregular and co‐existed concave and convex surfaces. These particles may interlock each other, making the sliding and friction of IRS particles more complex than that of particles with regular shape. In order to study the interaction of IRS particles more efficiently, a refined method of constructing discrete element model based on computed tomography scanning of IRS particles is proposed. Three parameters were introduced to control the accuracy and the number of packing spheres. Subsequently, the inertia tensor of the IRS particle model was optimized. Finally, laboratory and numerical open bottom cylinder tests were carried out to verify the refined modeling method. The influence of particle shape, particle position, and mesoscopic friction coefficient on the interaction of particles was also simulated. It is noteworthy that with the increase of mesoscopic friction coefficient, the fluidity of IRS particle assembly decreases, and intermittent limit equilibrium state may appear. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
99.
Microlites (minute spherulitic, dendritic, skeletal, acicular and poikilitic crystals) diagnostic of crystallization in quenched melt or glass in fault rocks have been used to infer fossil earthquakes. High‐P microlites and crystallites are described here in a variably eclogitized gabbro, the wallrock to the coesite‐bearing eclogite breccia at Yangkou in the Chinese Su‐Lu high‐P metamorphic belt. The studied hand specimens are free of discernible shear deformation, although microfractures are not uncommon under the microscope. In the least eclogitized gabbro, the metagabbro, stellate growths of high‐P minerals on the relict igneous minerals are common. Dendritic garnet crystals (<1?5 μm) grew around rutile and/or phengite replacing ilmenite and biotite, respectively. Skeletal garnet also rims broken flakes of igneous biotite and mechanically twinned augite. Radial intergrowths of omphacite and quartz developed around relict igneous orthopyroxene and are rimmed by skeletal or poikilitic garnet where a Ti‐bearing mineral relict is present. Acicular epidote, kyanite and phengite crystallites are randomly distributed in a matrix of Na‐rich plagioclase, forming the pseudomorphs after igneous plagioclase. In the more eclogitized gabbro, the coronitic eclogite located closer to the eclogite breccia, all the igneous minerals broke down into high‐P assemblages. Thick coronas of poikilitic garnet grew between the pseudomorphs after igneous plagioclase and ferromagnesian minerals. The igneous plagioclase is replaced by omphacite crystallites, with minor amounts of phengite and kyanite. Thermodynamic modelling of the plagioclase pseudomorphs shows an increase in P–T in the wallrock from the metagabbro to the coronitic eclogite, and the P–T variation is unrelated to H2O content. The fluid‐poor pressure overstepping scenario is unsupported both by phase diagram modelling and by whole‐rock chemical data, which show that the various types of eclogitized gabbro are all fairly dry. A large pressure difference of >2 GPa between the metagabbro and the coesite‐bearing eclogites ~20 m apart cannot be explained by the subduction hypothesis because this would require a depth difference of >60 km. The microlites and crystallites are evidence for dynamic crystallization due to rapid cooling because constitutional supercooling was unlikely for the plagioclase pseudomorphs. The lack of annealing of the broken biotite and augite overgrown by strain free skeletal garnet is consistent with a transient high‐P–T event at a low ambient temperature (<300 °C), probably in the crust. Therefore, the eclogitization of the wallrock to the eclogite breccia was also coseismic, as proposed earlier for the eclogite facies fault rocks. The outcrop‐scale P–T variation and the transient nature of the high‐P–T event are inconsistent with the other existing tectonic models for high‐P metamorphism. The fact that the less refractory but denser biotite is largely preserved while the more refractory but less dense plagioclase broke down completely into high‐P microlite assemblages in the metagabbro indicates a significant rise in pressure rather than temperature. Given that the metamorphic temperatures are far below the melting temperatures of most of the gabbroic minerals under fluid‐absent conditions, stress‐induced amorphization appears to be the more likely mechanism of the coseismic high‐P metamorphism.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号