首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24770篇
  免费   232篇
  国内免费   992篇
测绘学   1438篇
大气科学   2035篇
地球物理   4602篇
地质学   11723篇
海洋学   1091篇
天文学   1674篇
综合类   2196篇
自然地理   1235篇
  2024年   3篇
  2023年   4篇
  2022年   11篇
  2021年   14篇
  2020年   12篇
  2019年   15篇
  2018年   4765篇
  2017年   4047篇
  2016年   2588篇
  2015年   246篇
  2014年   92篇
  2013年   43篇
  2012年   1010篇
  2011年   2745篇
  2010年   2035篇
  2009年   2333篇
  2008年   1910篇
  2007年   2370篇
  2006年   77篇
  2005年   210篇
  2004年   415篇
  2003年   424篇
  2002年   263篇
  2001年   57篇
  2000年   60篇
  1999年   29篇
  1998年   49篇
  1997年   16篇
  1996年   17篇
  1995年   18篇
  1994年   15篇
  1993年   8篇
  1992年   5篇
  1991年   10篇
  1990年   5篇
  1989年   4篇
  1988年   7篇
  1987年   7篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1981年   22篇
  1980年   19篇
  1976年   7篇
  1975年   1篇
  1965年   1篇
  1958年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
141.
Spatial and Temporal Variations of Sound Speed at the PN Section   总被引:3,自引:0,他引:3  
Gridded sound speed data were calculated using Del Grosso's formulation from the temperature and salinity data at the PN section in the East China Sea covering 92 cruises between February 1978 and October 2000. The vertical gradients of sound speed are mainly related to the seasonal variations, and the strong horizontal gradients are mainly related to the Kuroshio and the upwelling. The standard deviations show that great variations of sound speed exist in the upper layer and in the slope zone. Empirical orthogonal function analysis shows that contributions of surface heating and the Kuroshio to sound speed variance are almost equivalent. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
142.
Hydrographic data and composite current velocity data (ADCP and GEK) were used to examine the seasonal variations of upper-ocean flow in the southern sea area of Hokkaido, which includes the “off-Doto” and “Hidaka Bay” areas separated by Cape Erimo. During the heating season (April–September), the outflow of the Tsugaru Warm Current (TWC) from the Tsugaru Strait first extends north-eastward, and then one branch of TWC turns to the west along the shelf slope after it approaches the Hidaka Shelf. The main flow of TWC evolves continuously, extending eastward as far as the area off Cape Erimo. In the late cooling season (January–March), part of the Oyashio enters Hidaka Bay along the shallower part of the shelf slope through the area off Cape Erimo, replacing almost all of the TWC water, and hence the TWC devolves. It is suggested that the bottom-controlled barotropic flow of the Oyashio, which may be caused by the small density difference between the Oyashio and the TWC waters and the southward migration of main front of TWC, permits the Oyashio water to intrude along the Hidaka shelf slope.  相似文献   
143.
本文研究了虾蟹海产品香味的前体物质在加热前后的变化。实验结果表明:对虾和蟹肌肉中的糖原和不饱和脂肪酸在加热前后含量下降,糖原是Maillard反应的基础物质.不饱和脂肪酸是虾蟹肌肉香味中羰基化合物的前体物质。虾蟹肌肉中主要积累的核苷酸成分AMP在加热后减少,而肌肉提取物中的游离氨基酸和结合氨基酸,特别是疏水氨基酸含量均增加。  相似文献   
144.
贻贝(Mytilus edulis L.)是一种冷水性双壳类软体动物,它在我国沿岸分布的南限是胶州湾,但仅见于港内码头及船底上,且数量不多。 1958年青岛市水产局、原青岛市海水养殖场和中国科学院海洋研究所等单位曾一起自大连和烟台移贻贝苗至青岛试养,次年养殖架上也曾有少量幼苗附着,但未能大量繁殖起来。1971年后胶南县海水养殖试验场及青岛市第二海水养殖场等先后进行数十亩乃至数百亩移苗养殖,附苗量虽有所增长,但直至1974年仍缺乏生产意义。这种情况引起我们的思考:胶州湾贻贝苗源能否大量发展?它的限制因素是什么? 1972年至1973年,我们与烟台地区海水养殖试验场等单位曾对烟台沿岸贻贝苗源进行调查研究,确认当时烟台苗种产量不高的主要原因是附着基不足,其次是亲贝不足,据此试验成功了“废旧草绠采苗法”。之后,随着采苗器材的增加及养殖面积的不断扩大,烟台芝罘湾已发展成为一个较好的苗场,通常可供万亩以上生产用苗。这个经验对我们开发胶州湾的苗源很有启发。 1975年胶南县在胶州湾大力推广“废旧草绠采苗法”,收割海带后保留废旧海带架两万台采贻贝苗, 1976年进一步扩大贻贝养殖面积,继续留绠采苗。我们在青岛市水产局及胶南县水产局等单位的协助下,于1975年9月及1976年8-9月,对胶州湾内及湾口(青岛前海)留绠采苗的情况进行了调查,这些调查资料即为本文的主要依据。  相似文献   
145.
在连云港近岸海域计算潮流场基础上建立拉格朗日余流模型,并对连云港市两大堤建成前后的拉格朗日余流变化进行了分析,且选择有代表性的排污口进行了数值跟踪。  相似文献   
146.
根据作者导得的AfKdV方程,理论上确定了先锋孤立子生成问题的理论平均波阻,能量劈分及能量劈分比。本文的能量劈分是确定先锋孤立子生成参数的理论基础。同时,本理论确定了现有理论中的自由未知参数问题,从而使先锋孤立子生成参数得到理论预报。  相似文献   
147.
Hydrodynamic and sediment transport measurements from instrumentation deployed during a 54-day winter period at two sites on the Louisiana inner shelf are presented. Strong extratropical storms, with wind speeds of 7.8 to 15.1 m s-1, were the dominant forcing mechanism during the study. These typically caused mean oscillatory flows and shear velocities about 33% higher than fair weather (averaging 12.3 and 3.2 cm s-1 at the landward site, and 11.4 and 2.7 cm s-1 at the seaward site, respectively). These responses were coupled with mean near-bottom currents more than twice as strong as during fair weather (10.3 and 7.5 cm s-1 at the landward and seaward sites, respectively). These flowed in approximately the same direction as the veering wind, causing a net offshore transport of fine sand. Weak storms were responsible for little sediment transport whereas during fair weather, onshore sand transport of approximately 25-75% of the storm values appears to have occurred. This contradicts previous predictions of negligible fair-weather sediment movement on this inner shelf.  相似文献   
148.
A high-resolution seismic survey covering more than 2,000 km2 has revealed the processes responsible for the slope morphology and channel sedimentation across the forearc slope-basin of the Kurile Arc–NE Japan Arc collision zone, offshore from Tokachi (Hokkaido, Japan). The dominant slope contours parallel the trench but, in the middle and lower reaches of the southern slope, contours are convex-shaped with an offshore trend. This sector of the slope is traversed diagonally by the Hiroo submarine channel. The offshore-trending convex contours and the channel course have developed through the interplay of tectonic and sedimentary processes, including the development of anticlines, anticline-induced lobe sedimentation and channel avulsion. In its upper reaches, the channel is restricted by a topographic low associated with NNW–SSE-trending anticlines which developed within the upper and middle slope sectors during late Miocene uplift. The uplift timing and trend of these anticlines indicate that they resulted from collision, the channel sedimentology and slope morphology of the middle and lower slopes having been influenced by Pliocene uplift of NE–SW-trending anticlines. The trends of these anticlines parallel those of the Kurile Trench. The Pliocene and early Pleistocene strata of the middle and lower slopes consist of ponded lobe sediments deposited along the palaeo-Hiroo submarine channel on the landward side of the anticlines. As a lobe pile accumulated, the channel thalweg shifted to the north of the stack, allowing the channel to bypass the topographic high formed by the growing stack. Thick levee deposits built up along the channel course during the late Pleistocene and Holocene. These levees, along with the Pliocene and early Pleistocene lobes, are reflected in the present-day sigmoid-shaped, convex offshore-trending contours. Thus, the interplay of subduction- and collision-related anticlines, tectonic-related channel ponding, and avulsion has contributed to the slope morphology of the southern Kurile Trench.  相似文献   
149.
The variation of the backscatter strength with the angle of incidence is an intrinsic property of the seafloor, which can be used in methods for acoustic seafloor characterization. Although multibeam sonars acquire backscatter over a wide range of incidence angles, the angular information is normally neglected during standard backscatter processing and mosaicking. An approach called Angular Range Analysis has been developed to preserve the backscatter angular information, and use it for remote estimation of seafloor properties. Angular Range Analysis starts with the beam-by-beam time-series of acoustic backscatter provided by the multibeam sonar and then corrects the backscatter for seafloor slope, beam pattern, time varying and angle varying gains, and area of insonification. Subsequently a series of parameters are calculated from the stacking of consecutive time series over a spatial scale that approximates half of the swath width. Based on these calculated parameters and the inversion of an acoustic backscatter model, we estimate the acoustic impedance and the roughness of the insonified area on the seafloor. In the process of this inversion, the behavior of the model parameters is constrained by established inter-property relationships. The approach has been tested using a 300 kHz Simrad EM3000 multibeam sonar in Little Bay, NH. Impedance estimates are compared to in situ measurements of sound speed. The comparison shows a very good correlation, indicating the potential of this approach for robust seafloor characterization.  相似文献   
150.
Two single-channel seismic (SCS) data sets collected in 2000 and 2005 were used for a four-dimensional (4D) time-lapse analysis of an active cold vent (Bullseye Vent). The data set acquired in 2000 serves as a reference in the applied processing sequence. The 4D processing sequence utilizes time- and phase-matching, gain adjustments and shaping filters to transform the 2005 data set so that it is most comparable to the conditions under which the 2000 data were acquired. The cold vent is characterized by seismic blanking, which is a result of the presence of gas hydrate in the subsurface either within coarser-grained turbidite sands or in fractures, as well as free gas trapped in these fracture systems. The area of blanking was defined using the seismic attributes instantaneous amplitude and similarity. Several areas were identified where blanking was reduced in 2005 relative to 2000. But most of the centre of Bullseye Vent and the area around it were seen to be characterized by intensified blanking in 2005. Tracing these areas of intensified blanking through the three-dimensional (3D) seismic volume defined several apparent new flow pathways that were not seen in the 2000 data, which are interpreted as newly generated fractures/faults for upward fluid migration. Intensified blanking is interpreted as a result of new formation of gas hydrate in the subsurface along new fracture pathways. Areas with reduced blanking may be zones where formerly plugged fractures that had trapped some free gas may have been opened and free gas was liberated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号