首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   5篇
测绘学   1篇
大气科学   4篇
地球物理   12篇
地质学   15篇
天文学   7篇
自然地理   1篇
  2021年   2篇
  2020年   1篇
  2018年   4篇
  2017年   3篇
  2016年   3篇
  2015年   5篇
  2014年   5篇
  2013年   3篇
  2012年   3篇
  2009年   1篇
  2008年   2篇
  2006年   2篇
  2005年   1篇
  2004年   2篇
  2002年   1篇
  1997年   1篇
  1989年   1篇
排序方式: 共有40条查询结果,搜索用时 15 毫秒
21.
This study was undertaken to evaluate land use change impact and management scenarios on annual average surface runoff (SR) and sediment yield (SY) using the GeoWEPP tool in the Lighvanchai watershed (located in northwestern Iran). Following a sensitivity analysis, the WEPP model was calibrated (2005–2007) and validated (2008–2010) against monthly observed SY and SR. The coefficient of determination (R 2), Nash–Sutcliffe efficiency (NSE), mean bias error (MBE), and root-mean-square error (RMSE) were applied to quantitatively evaluate the WEPP model. The results indicate a satisfactory model performance with R 2 > 0.80 and NSE > 0.60. Therefore, the model for current land use (scenario 1) was run for a 30-year time period (1982–2011). The annual average of SR and sediment load were predicted as 93,584 m3/year and 4340 ton/year, respectively. To reduce the annual average surface runoff and sediment yield at the watershed scale, the second scenario (alfalfa cultivation with suitable tillage) and the third scenario (grassland development) as two management scenarios of land use changes were defined by identifying the critical hillslopes. The rate of SR and sediment load in the second scenario were 42,096 m3/year and 429 ton/year, respectively. For the third scenario, the model predictions were 30,239 m3/year and 226 ton/year, respectively. Compared to the first scenario, the reduction rates in annual average of sediment load were about 90 and 94%, respectively. Moreover, for the second and third management scenarios, the reduction rates in annual average of SR were about 55 and 67%, respectively.  相似文献   
22.
Natural Hazards - Several studies have been conducted on droughts, precipitation, and temperature, whereas none have addressed the underlying relationship between nonlinear dynamic properties and...  相似文献   
23.
Basin-centric long short-term memory (LSTM) network models have recently been shown to be an exceptionally powerful tool for stream temperature (Ts) temporal prediction (training in one period and predicting in another period at the same sites). However, spatial extrapolation is a well-known challenge to modelling Ts and it is uncertain how an LSTM-based daily Ts model will perform in unmonitored or dammed basins. Here we compiled a new benchmark dataset consisting of >400 basins across the contiguous United States in different data availability groups (DAG, meaning the daily sampling frequency) with and without major dams, and studied how to assemble suitable training datasets for predictions in basins with or without temperature monitoring. For prediction in unmonitored basins (PUB), LSTM produced a root-mean-square error (RMSE) of 1.129°C and an R2 of 0.983. While these metrics declined from LSTM's temporal prediction performance, they far surpassed traditional models' PUB values, and were competitive with traditional models' temporal prediction on calibrated sites. Even for unmonitored basins with major reservoirs, we obtained a median RMSE of 1.202°C and an R2 of 0.984. For temporal prediction, the most suitable training set was the matching DAG that the basin could be grouped into (for example, the 60% DAG was most suitable for a basin with 61% data availability). However, for PUB, a training dataset including all basins with data was consistently preferred. An input-selection ensemble moderately mitigated attribute overfitting. Our results indicate there are influential latent processes not sufficiently described by the inputs (e.g., geology, wetland covers), but temporal fluctuations can still be predicted well, and LSTM appears to be a highly accurate Ts modelling tool even for spatial extrapolation.  相似文献   
24.
Absorption‐line systems detected in high resolution quasar spectra can be used to compare the value of dimensionless fundamental constants such as the fine‐structure constant, α, and the proton‐to‐electron mass ratio, μ = mp/me, as measured in remote regions of the Universe to their value today on Earth. In recent years, some evidence has emerged of small temporal and also spatial variations in α on cosmological scales which may reach a fractional level of ≈ 10 ppm (parts per million). We are conducting a Large Programme of observations with the Very Large Telescope's Ultraviolet and Visual Echelle Spectrograph (UVES), and are obtaining high‐resolution (R ≈ 60000) and high signal‐to‐noise ratio (S/N ≈ 100) spectra calibrated specifically to study the variations of the fundamental constants. We here provide a general overview of the Large Programme and report on the first results for these two constants, discussed in detail in Molaro et al. (2013) and Rahmani et al. (2013). A stringent bound for Δα /α is obtained for the absorber at zabs = 1.6919 towards HE 2217‐2818. The absorption profile is complex with several very narrow features, and is modeled with 32 velocity components. The relative variation in α in this system is +1.3 ± 2.4stat ± 1.0sys ppm if Al II λ 1670 Å and three FeII transitions are used, and +1.1 ± 2.6stat ppm in a slightly different analysis with only FeII transitions used. This is one of the tightest bounds on α ‐variation from an individual absorber and reveals no evidence for variation in α at the 3‐ppm precision level (1σ confidence). The expectation at this sky position of the recently‐reported dipolar variation of α is (3.2–5.4) ± 1.7 ppm depending on dipole model used and this constraint of Δα /α at face value is not supporting this expectation but not inconsistent with it at the 3σ level. For the proton‐to‐electron mass ratio the analysis of the H2 absorption lines of the zabs ≈ 2.4018 damped Lyα system towards HE 0027–1836 provides Δμ /μ = (–7.6 ± 8.1stat ± 6.3sys) ppm which is also consistent with a null variation. The cross‐correlation analysis between individual exposures taken over three years and comparison with almost simultaneous asteroid observations revealed the presence of a possible wavelength dependent velocity drift as well as of inter‐order distortions which probably dominate the systematic error and are a significant obstacle to achieve more accurate measurements. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
25.
Mineralogy and Petrology - Pegmatite-hosted garnets from four localities in the Boroujerd region, Lorestan (Western Iran), have been analysed for major and selected trace element compositions. The...  相似文献   
26.
New approximate formulas are proposed to determine the natural frequencies of structures considering the effects of panel zone flexibility and soil-structure interaction. Several structures with various earthquake resisting systems are idealized as prismatic cantilever flexural-shear beams. Floor masses are considered as lumped masses at each story level and masses of columns are evenly distributed along the cantilever beam. Soil-structure interaction is considered as axial and rotational springs, whose potential energy are formulated and incorporated into overall potential energy of the structure. Subsequently, natural frequency equations are derived on the basis of energy conservation principle. The effect of axial forces on natural frequency is also considered in the proposed formulas. Using the method presented in this study, natural frequencies are computed using a simplified method with no complex numerical modeling. The proposed formulas are verified via experimental and numerical methods. Close agreement between the results from these three approaches are observed. Furthermore, the effects of panel zone flexibility, continuity plates and doubler plates on the natural frequencies of buildings are investigated.  相似文献   
27.
All numerical weather prediction (NWP) models inherently have substantial biases, especially in the forecast of near-surface weather variables. Statistical methods can be used to remove the systematic error based on historical bias data at observation stations. However, many end users of weather forecasts need bias corrected forecasts at locations that scarcely have any historical bias data. To circumvent this limitation, the bias of surface temperature forecasts on a regular grid covering Iran is removed, by using the information available at observation stations in the vicinity of any given grid point. To this end, the running mean error method is first used to correct the forecasts at observation stations, then four interpolation methods including inverse distance squared weighting with constant lapse rate (IDSW-CLR), Kriging with constant lapse rate (Kriging-CLR), gradient inverse distance squared with linear lapse rate (GIDS-LR), and gradient inverse distance squared with lapse rate determined by classification and regression tree (GIDS-CART), are employed to interpolate the bias corrected forecasts at neighboring observation stations to any given location. The results show that all four interpolation methods used do reduce the model error significantly, but Kriging-CLR has better performance than the other methods. For Kriging-CLR, root mean square error (RMSE) and mean absolute error (MAE) were decreased by 26% and 29%, respectively, as compared to the raw forecasts. It is found also, that after applying any of the proposed methods, unlike the raw forecasts, the bias corrected forecasts do not show spatial or temporal dependency.  相似文献   
28.
This paper presents the results of an extensive numerical parametric study on seismic behavior of 2D homogenous hills subjected to vertically propagating incident SV waves. It is shown that the amplification potential of these hills is strongly influenced by the wavelength, by the shape ratio, by the shape of the hill and in a less order of importance, by the Poisson ratio of the media. The 2D topography effect could be ignored, only if the hill has a shape ratio of less than 0.1 or if it is subjected to incident waves with predominant dimensionless periods of greater than 13 times the shape ratio. In incidence of waves with wavelengths longer than the width of the hill, the amplification curve usually finds its maximum at the crest and decreases towards the base of the hill. Else, some de-amplification zones would occur along the hill. Among hills with similar shape ratios, those with intermediate cross section areas show intermediate seismic behavior, too. Estimated seismic site coefficients for the crest of a 2D rocky hill depend on its shape ratio and could reach even 1.7, which encourages one to classify it according to standard site categorization procedures as soil profile types SC or SD instead of the conventional SB type.  相似文献   
29.
30.
Iran is located in one of the seismically active regions of the world. Due to the high probability of earthquakes throughout the country and the potential for tsunami inundation along the coasts and offshore, comprehensive studies on the interaction of these natural phenomena are necessary. In this study, the most conservative scenarios are determined for possible earthquakes within the Khark zone (Persian Gulf) based on experimental relations between the fault length, magnitude and displacement, which are parameters for determining tsunamigenic sources. Subsequently, the maximum height of tsunami waves are calculated based on the specifications of the seismic source and its distance from the shore as well as the coastal slope. A zoning map of tsunami hazard is finally presented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号