首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   243篇
  免费   11篇
  国内免费   1篇
测绘学   1篇
大气科学   26篇
地球物理   57篇
地质学   113篇
海洋学   10篇
天文学   41篇
自然地理   7篇
  2022年   3篇
  2021年   5篇
  2020年   3篇
  2019年   1篇
  2018年   6篇
  2017年   2篇
  2016年   9篇
  2015年   4篇
  2014年   4篇
  2013年   11篇
  2012年   13篇
  2011年   13篇
  2010年   13篇
  2009年   14篇
  2008年   19篇
  2007年   12篇
  2006年   13篇
  2005年   13篇
  2004年   3篇
  2003年   11篇
  2002年   7篇
  2001年   7篇
  2000年   10篇
  1999年   3篇
  1998年   2篇
  1997年   6篇
  1995年   4篇
  1994年   4篇
  1993年   2篇
  1992年   3篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   4篇
  1987年   1篇
  1986年   2篇
  1984年   2篇
  1983年   3篇
  1982年   4篇
  1981年   1篇
  1979年   1篇
  1977年   2篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
  1972年   1篇
  1970年   1篇
  1969年   1篇
  1948年   2篇
  1925年   1篇
排序方式: 共有255条查询结果,搜索用时 15 毫秒
121.
122.
In the Central Atlantic archipelagos – the Canaries, Cape Verde, Madeira and the Azores – tsunami hazard is often regarded as low, when compared with other extreme wave events such as hurricanes and storms. The geological record of many of these islands, however, suggests that tsunami hazard may be underestimated, notwithstanding being lower than in areas adjacent to subduction zones, such as the margins of the Pacific and Indian oceans. Moreover, tsunamis in oceanic islands are generally triggered by local large-scale volcanic flank collapses, for which little is known about their frequency, making it difficult to estimate the probability of a new occurrence. Part of the problem lies in the fact that tsunami deposits are usually difficult to date, and few islands in the world exhibit evidence for repeated tsunami inundation on a protracted timescale. This study reports on the presence of abundant tsunami deposits (conglomerates and sandstones) on Maio Island (Cape Verde) and discusses their stratigraphy, sedimentological characteristics, probable age and tsunamigenic source. Observations indicate that four distinct inundation events of variable magnitude took place during the Pleistocene. One of the tsunami deposits yielded a high-confidence U/Th age of 78·8 ± 0·9 ka, which overlaps within error with the 73 ± 7 ka age proposed for Fogo volcano's flank collapse, an event known to have had a significant tsunami impact on nearby Santiago Island. This shows that the Fogo tsunami also impacted Maio, resulting in runups in excess of 60 m above coeval sea-level at ca 120 km from the source. Two older deposits, possibly linked to recurrent flank collapses of the Tope de Coroa volcano in Santo Antão Island, yielded lower-confidence ages of 479 to 390 ka and 360 to 304 ka. A younger deposit (<78 ka) remains undated. In summary, the geological record of Maio exhibits well-preserved evidence of repeated tsunami inundation, reinforcing the notion that tsunami hazard is not so low at volcanic archipelagos featuring prominent and highly-active volcanoes such as in Cape Verde.  相似文献   
123.
We present CO(1-0) observations toward the soft gamma-ray repeater SGR 1806-20. We discuss the implications on the distance to the X-ray counterpart: AX 1805.7-2025. We also present an upper limit at = 1.3 mm for the thermal emission from dust and high resolution IRAS maps of the region. SGR 1806-20 is very likely associated with the H II complex W31. The G10.0-0.3 supernova remnant (SNR) could be expanding in the very low density region produced by the wind of the bright O9-B2 star recently detected.National Academy of Sciences / National Research Council Resident Research Associate  相似文献   
124.
To assist the government of Vietnam in its efforts to better understand the impacts of climate change and prioritise its adaptation measures, dynamically downscaled climate change projections were produced across Vietnam. Two Regional Climate Models (RCMs) were used: CSIRO’s variable-resolution Conformal-Cubic Atmospheric Model (CCAM) and the limited-area model Regional Climate Model system version 4.2 (RegCM4.2). First, global CCAM simulations were completed using bias- and variance-corrected sea surface temperatures as well as sea ice concentrations from six Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models. This approach is different from other downscaling approaches as it does not use any atmospheric fields from the GCMs. The global CCAM simulations were then further downscaled to 10 km using CCAM and to 20 km using RegCM4.2. Evaluations of temperature and precipitation for the current climate (1980-2000) were completed using station data as well as various gridded observational datasets. The RCMs were able to reproduce reasonably well most of the important characteristics of observed spatial patterns and annual cycles of temperature. Average and minimum temperatures were well simulated (biases generally less than 1oC), while maximum temperatures had biases of around 1oC. For precipitation, although the RCMs captured the annual cycle, RegCM4.2 was too dry in Oct.-Nov. (-60% bias), while CCAM was too wet in Dec.- Mar. (130% bias). Both models were too dry in summer and too wet in winter (especially in northern Vietnam). The ability of the ensemble simulations to capture current climate increases confidence in the simulations of future climate.  相似文献   
125.
VHF Radar echoes in the summer mesosphere at mid- and polar latitudes ([P]MSE—[polar] mesosphere summer echoes) are connected with very cold temperatures where ice particles can exist. Temperature variations can cause conditions for the generation and evaporation of ice particles and affect the [P]MSE occurrence. The impact of temperature and meridional wind oscillations on [P]MSE is described. Generally at mid-latitudes, strong mesosphere summer echoes are strongly affected by meridional wind variations if the mean temperature is near the frost point of water vapor. In contrast, at polar latitudes there is mostly no significant impact of the meridional wind on radar echoes. A mean temperature well below the frost point and a weaker meridional temperature gradient than at mid-latitudes are reasons for this reduced influence. Due to higher temperatures in 2002, long period temperature and meridional wind variations impact the PMSE more than during the other years.  相似文献   
126.
Kimmoun  Olivier  Hsu  Hung-Chu  Hoffmann  Norbert  Chabchoub  Amin 《Ocean Dynamics》2021,71(11-12):1105-1112
Ocean Dynamics - We report an experimental study addressing the characteristic hydrodynamic transformations of unstable wave groups as well as JONSWAP wave fields propagating from deep-water...  相似文献   
127.
It has been proposed that Archean tonalitic-trondhjemitic-granodioritic magmas (TTGs) formed by melting of mafic crust at high pressures. The residual mineralogy of the TTGs (either (garnet)-amphibolite or rutile-bearing eclogite) is believed to control the trace element budget of TTGs. In particular, ratios of high-field-strength elements (HFSE) can help to discriminate between the different residual lithologies. In order to place constraints on the source mineralogy of TTGs, we performed high-precision HFSE measurements by isotope dilution (Nb, Ta, Zr, Hf) together with Lu-Hf and Sm-Nd measurements on representative, ca. 3.85-2.8 Ga TTGs and related rock types from southern West Greenland, W-India and from the Superior Province. These measurements are complemented by major and trace element data for the TTGs. Texturally homogeneous early Archean (3.85-3.60 Ga old) and Mesoarchean (ca. 3.1-2.8 Ga old) TTGs have both low Ni (<11 ppm) and Cr contents (<20 ppm), indicating that there was little or no interaction with mantle peridotite during ascent. Ratios of Nb/Ta in juvenile Eoarchean TTGs range from ca. 7 to ca. 24, and in juvenile Mesoarchean TTGs from ca. 14 to ca. 27. Even higher Nb/Ta (14-42) were obtained for migmatitic TTGs and intra-crustal differentiates, most likely mirroring further fractionation of Nb from Ta as a consequence of partial melting, fluid infiltration and migmatisation. In the juvenile TTGs, positive correlations between Nb/Ta and Gd/Yb, La/Yb, Sr/Y, Zr/Sm and Zr/Nb are observed. These compositional arrays are best explained by melting of typical Isua tholeiites in both, the rutile-bearing eclogite stability field (>15 kbar, high Nb/Ta) and the garnet-amphibolite stability field (10-15 kbar, low Nb/Ta). With respect to the low end of Nb/Ta found for TTGs, there is currently some uncertainty between the available experimental datasets for amphibole. Independent of these uncertainties, the TTG compositions found here still require the presence of both endmember residues. A successful geological model for the TTGs therefore has to account for the co-occurrence of both low- and high-Nb/Ta TTGs within the same geologic terrane. An additional feature observed in the Eoarchean samples from Greenland is a systematic co-variation between Nb/Ta and initial εHf(t), which is best explained by a model where TTG-melting occured at progressively increasing pressures in a pile of tectonically thickened mafic crust. The elevated Nb/Ta in migmatitic TTGs and intra-crustal differentiates can shed further light on the role of intra-crustal differentiation processes in the global Nb/Ta cycle. Lower crustal melting processes at granulite facies conditions may generate high-Nb/Ta domains in the middle crust, whereas mid-crustal melting at amphibolite facies conditions may account for the low Nb/Ta generally observed in upper crustal rocks.  相似文献   
128.
The terpenoid composition of fossil resin from the Cape York Peninsula, Australia has been analysed by pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) to determine its origin. The pyrolysis products were dominated by cadalene-based C15 bicyclic sesquiterpenoids including some C30–C31 bicadinanes and bicadinenes typical of Class II resin derived from angiosperm plants of Dipterocarpaceae. This observation contrasts with the Araucariaceae (Agathis sp.) source previously suggested for the resin based on Fourier transform infrared (FTIR) analyses. Dipterocarpaceae are not known in Australian vegetation but grow abundantly in Southeast Asia including New Guinea, indicating that the geological origin of the amber is not the Australian mainland but could be traced to Southeast Asia.  相似文献   
129.
Nine SHRIMP U/Pb ages on zircon and two Pb/Pb single zircon ages have been determined from Late Paleozoic volcanic rocks from Saxony and northern Bohemia. Samples came from the Teplice-Altenberg Volcanic Complex, the Meissen Volcanic Complex, the Chemnitz Basin, the Döhlen Basin, the Brandov-Olbernhau Basin, and the North Saxon Volcanic Complex. The Teplice-Altenberg Volcanic Complex is subdivided into an early Namurian phase (Mikulov Ignimbrite, 326.8 ± 4.3 Ma), thus older than assumed by previous studies, and a late caldera-forming phase (Teplice Ignimbrite, 308.8 ± 4.9 Ma). The age of the latter, however, is not well constrained due to a large population of inherited zircon and possible hydrothermal overprint. The Leutewitz Ignimbrite, product of an early explosive volcanic episode of the Meissen Volcanic Complex yielded an age of 302.9 ± 2.5 Ma (Stephanian A). Volcanic rocks intercalated in the Brandov-Olbernhau Basin (BOB, 302 ± 2.8 Ma), Chemnitz Basin (CB, 296.6 ± 3.0 Ma), Döhlen Basin (DB, 296 ± 3.0 Ma), and the North Saxon Volcanic Complex (NSVC, c. 300–290 Ma) yielded well-constrained Stephanian to Sakmarian ages. The largest Late Paleozoic ignimbrite-forming eruption in Central Europe, the Rochlitz Ignimbrite, has a well-defined middle Asselian age of 294.4 ± 1.8 Ma. Ages of palingenic zircon revealed that the Namurian-Westphalian magmatism assimilated larger amounts of crystalline basement that formed during previous Paleozoic geodynamic phases. The Precambrian inherited ages support the chronostratigraphic structure assumed for the Saxo-Thuringian Zone of the Variscan Orogen. The present results help to improve the chronostratigraphic allocation of the Late Paleozoic volcanic zones in Central Europe. At the same time, the radiometric ages have implications for the interbasinal correlation and for the geodynamic evolution of the Variscan Orogeny.  相似文献   
130.
Tsunami runup and drawdown can cause liquefaction failure of coastal fine sand slopes due to the generation of high excess pore pressure and the reduction of the effective over burden pressure during the drawdown. The region immediately seaward of the initial shoreline is the most susceptible to tsunami-induced liquefaction failure because the water level drops significantly below the still water level during the set down phase of the drawdown. The objective of this work is to develop and validate a numerical model to assess the potential for tsunami-induced liquefaction failure of coastal sandy slopes. The transient pressure distribution acting on the slope due to wave runup and drawdown is computed by solving for the hybrid Boussinesq—nonlinear shallow water equations using a finite volume method. The subsurface pore water pressure and deformation fields are solved simultaneously using a finite element method. Two different soil constitutive models have been examined: a linear elastic model and a non-associative Mohr–Coulomb model. The numerical methods are validated by comparing the results with analytical models, and with experimental measurements from a large-scale laboratory study of breaking solitary waves over a planar fine sand beach. Good comparisons were observed from both the analytical and experimental validation studies. Numerical case studies are shown for a full-scale simulation of a 10-m solitary wave over a 1:15 and 1:5 sloped fine sand beach. The results show that the soil near the bed surface, particularly along the seepage face, is at risk to liquefaction failure. The depth of the seepage face increases and the width of the seepage face decreases with increasing bed slope. The rate of bed surface loading and unloading due to wave runup and drawdown, respectively, also increases with increasing bed slope. Consequently, the case with the steeper slope is more susceptible to liquefaction failure due to the higher hydraulic gradient. The analysis also suggests that the results are strongly influenced by the soil permeability and relative compressibility between the pore fluid and solid skeleton, and that a coupled solid/fluid formulation is needed for the soil solver. Finally, the results show the drawdown pore pressure response is strongly influenced by nonlinear material behavior for the full-scale simulation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号