首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5542篇
  免费   239篇
  国内免费   109篇
测绘学   194篇
大气科学   571篇
地球物理   1499篇
地质学   2403篇
海洋学   257篇
天文学   677篇
综合类   84篇
自然地理   205篇
  2022年   44篇
  2021年   86篇
  2020年   69篇
  2019年   47篇
  2018年   176篇
  2017年   168篇
  2016年   241篇
  2015年   184篇
  2014年   271篇
  2013年   320篇
  2012年   271篇
  2011年   224篇
  2010年   267篇
  2009年   272篇
  2008年   220篇
  2007年   194篇
  2006年   147篇
  2005年   141篇
  2004年   106篇
  2003年   105篇
  2002年   119篇
  2001年   115篇
  2000年   103篇
  1999年   97篇
  1998年   117篇
  1997年   72篇
  1996年   94篇
  1995年   67篇
  1994年   71篇
  1993年   61篇
  1992年   44篇
  1991年   47篇
  1990年   54篇
  1989年   48篇
  1988年   34篇
  1987年   48篇
  1986年   42篇
  1985年   39篇
  1984年   50篇
  1983年   56篇
  1982年   46篇
  1981年   42篇
  1980年   44篇
  1979年   48篇
  1978年   48篇
  1977年   41篇
  1976年   33篇
  1975年   47篇
  1974年   41篇
  1973年   41篇
排序方式: 共有5890条查询结果,搜索用时 15 毫秒
141.
Sr–Nd–Pb isotope ratios of alkaline mafic intra-plate magmatism constrain the isotopic compositions of the lithospheric mantle along what is now the eastern foreland or back arc of the Cenozoic Central Andes (17–34°S). Most small-volume basanite volcanic rocks and alkaline intrusive rocks of Cretaceous (and rare Miocene) age were derived from a depleted lithospheric mantle source with rather uniform initial 143Nd/144Nd ( 0.5127–0.5128) and 87Sr/86Sr ( 0.7032–0.7040). The initial 206Pb/204Pb ratios are variable (18.5–19.7) at uniform 207Pb/204Pb ratios (15.60 ± 0.05). A variety of the Cretaceous depleted mantle source of the magmatic rocks shows elevated Sr isotope ratios up to 0.707 at constant high Nd isotope ratios. The variable Sr and Pb isotope ratios are probably due to radiogenic growth in a metasomatized lithospheric mantle, which represents the former sub-arc mantle beneath the early Palaeozoic active continental margin. Sr–Nd–Pb isotope signatures of a second mantle type reflected in the composition of Cretaceous (one late Palaeozoic age) intra-plate magmatic rocks (143Nd/144Nd  0.5123, 87Sr/86Sr  0.704, 206Pb/204Pb  17.5–18.5, and 207Pb/204Pb  15.45–15.50) are similar to the isotopic composition of old sub-continental lithospheric mantle of the Brazilian Shield.

Published Nd and Sr isotopic compositions of Mesozoic to Cenozoic arc-related magmatic rocks (18–40°S) represent the composition of the convective sub-arc mantle in the Central Andes and are similar to those of the Cretaceous (and rare Miocene) intra-plate magmatic rocks. The dominant convective and lithospheric mantle type beneath this old continental margin is depleted mantle, which is compositionally different from average MORB-type depleted mantle. The old sub-continental lithospheric mantle did not contribute to Mesozoic to Cenozoic arc magmatism.  相似文献   

142.
This GGR biennial critical review covers developments and innovations in key analytical methods published since January 2014, relevant to the chemical, isotopic and crystallographic characterisation of geological and environmental materials. In nine selected analytical fields, publications considered to be of wide significance are summarised, background information is provided and their importance evaluated. In addition to instrumental technologies, this review also presents a summary of new developments in the preparation and characterisation of rock, microanalytical and isotopic reference materials, including a précis of recent changes and revisions to ISO guidelines for reference material characterisation and reporting. Selected reports are provided of isotope ratio determinations by both solution nebulisation MC‐ICP‐MS and laser ablation‐ICP‐MS, as well as of radioactive isotope geochronology by LA‐ICP‐MS. Most of the analytical techniques elaborated continue to provide new applications for geochemical analysis; however, it is noted that instrumental neutron activation analysis has become less popular in recent years, mostly due to the reduced availability of nuclear reactors to act as a neutron source. Many of the newer applications reported here provide analysis at increasingly finer resolution. Examples include atom probe tomography, a very sensitive method providing atomic scale information, nanoscale SIMS, for isotopic imaging of geological and biological samples, and micro‐XRF, which has a spatial resolution many orders of magnitude smaller than conventional XRF.  相似文献   
143.
Climate condition over a region is mostly determined by the changes in precipitation, temperature and evaporation as the key climate variables. The countries belong to the Belt and Road region are subjected to face strong changes in future climate. In this paper, we used five global climate models from the latest Sixth Phase of Coupled Model Intercomparison Project (CMIP6) to evaluate future climate changes under seven combined scenarios of the Shared Socioeconomic Pathways and the Representative Concentration Pathways (SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP4-3.4, SSP4-6.0 and SSP5-8.5) across the Belt and Road region. This study focuses on undertaking a climate change assessment in terms of future changes in precipitation, air temperature and actual evaporation for the three distinct periods as near-term period (2021-2040), mid-term period (2041-2060) and long-term period (2081-2100). To discern spatial structure, K?ppen-Geiger Climate Classification method has been used in this study. In relative terms, the results indicate an evidence of increasing tendency in all the studied variables, where significant changes are anticipated mostly in the long-term period. In addition to, though it is projected to increase under all the SSP-RCP scenarios, greater increases will be happened under higher emission scenarios (SSP5-8.5 and SSP3-7.0). For temperature, robust increases in annual mean temperature is found to be 5.2 °C under SSP3-7.0, and highest 7.0 °C under SSP5-8.5 scenario relative to present day. The northern part especially Cold and Polar region will be even more warmer (+6.1 °C) in the long-term (2081-2100) period under SSP5-8.5. Similarly, at the end of the twenty-first century, annual mean precipitation is inclined to increase largely with a rate of 2.1% and 2.8% per decade under SSP3-7.0 and SSP5-8.5 respectively. Spatial distribution demonstrates that the largest precipitation increases are to be pronounced in the Polar and Arid regions. Precipitation is projected to increase with response to increasing warming most of the regions. Finally, the actual evaporation is projected to increase significantly with rate of 20.3% under SSP3-7.0 and greatest 27.0% for SSP5-8.5 by the end of the century. It is important to note that the changes in evaporation respond to global mean temperature rise consistently in terms of similar spatial pattern for all the scenarios where stronger increase found in the Cold and Polar regions. The increase in precipitation is overruled by enhanced evaporation over the region. However, this study reveals that the CMIP6 models can simulate temperature better than precipitation over the Belt and Road region. Findings of this study could be the reliable basis for initiating policies against further climate induced impacts in the regional scale.  相似文献   
144.
Summary The development of a cyclonic vortex over a polynya is investigated with the primitive equation mesoscale model METRAS. The impact of different atmospheric processes on vortex development is determined by calculating the terms of the vorticity tendency equation. Sensitivity studies are performed for different large-scale situations (geostrophic winds 1 ms−1, 3 ms−1, 20 ms−1, initial ice-water temperature difference of 35 K or 17.5 K) and for different polynya sizes and shapes. In general, the vortex develops within a few hours. It is intensified by buoyancy, mainly resulting from latent heat release. Advective and diffusive processes hinder the vortex development. The intensification depends on the actual situation and is faster over small polynyas and heterogeneous ice cover. These situations result in intensification periods of only 12 to 18 hours for the vortex, but create very strong vortices. Halved horizontal temperature gradients also about halve the vortex intensity. The lifetime and intensification of a vortex increases with the time the air mass spends over the water. Thus, weak winds show a slower development of the vortex but the vortex intensifies for more than 24 hours. Over big polynyas several vortices develop, a long polynya results in a longer and narrower vortex which intensifies over a longer period.  相似文献   
145.
Carbon and oxygen isotopes were determined on 40 recrystallized shells of Late Jurassic bivalves from the Lusitanian Basin of Portugal. In contrast with the oxygen isotopes, which exhibited considerable diagenetic distortion, the carbon isotopes are thought to preserve a record of the salinity of the Jurassic marginal marine seas in which these bivalves lived. The reconstructed palaeosalinities range from 35%o (euhaline) to 5% (oligohaline). Comparing these values with the palaeosalinity reconstructed from a palaeoecological analysis of 17 stratigraphic levels within the basin, the independently derived values agree in most cases. Strongly differing values are explained as being due to biotic factors and to diagenetic distortion of the isotopic signal; they are less likely to be due to smallscale time-averaging or insufficient microstratigraphic sampling. On the whole, the carbon isotope analyses are thought to produce reasonable palaeosalinity values, although data from infaunal, originally aragonitic bivalves appear to be less reliable than those from epifaunal bivalves with a predominantly or exclusively calcitic shell. As diagenetic alteration of the carbon isotope signal is, however, unpredictable and biotic effects on the isotopic composition are insufficiently known, palaeosalinity reconstructions based on stable isotope data should be supported by palaeoecological data.  相似文献   
146.
A series of thermal conductivity measurements for various materials was performed in a large climate chamber. The size of the chamber allowed the preparation of relatively large samples in a controlled thermal environment. Three types of thermal sensors were used: (1) two needle probes; (2) a grid of temperature sensors, evenly distributed inside the sample; (3) two additional thermal probes, which were simplified versions of an instrument originally developed for measuring thermal properties of the ice/dust mixture expected to exist at the surface of a comet nucleus. They consist of a series of individual temperature sensors integrated into a glass fibre rod. Each of these sensors can be operated in an active (heated) or passive (only temperature sensing) mode. The following sample materials were used: fine-grained reddish sand, coarse-grained moist sand, gravels with various grain size distributions from < 1 cm up to about 6 cm, and for comparison and calibration pure water (with convection suppressed by adding agar-agar), compact ice, and compact granite. Of particular interest are the measurements with composite samples, like stones embedded in an agar-agar matrix. We describe the evaluation methods and present the results of the thermal conductivity measurements.  相似文献   
147.
The Huaniushan granite is located at the Beishan orogenic belt, northwestern China. At the contact zone between the granite and marble, a hydrothermal Pb-Zn and skarn Au deposit is formed. LA-ICP-MS zircon U-Pb dating yielded a weighted mean 206Pb/238U age of 229.5±2.6 Ma (MSDW=0.93) for the Huaniushan granite, imply-ing its Late Triassic intrusion. Geochemistry analyses show that the Huaniushan granite is enriched in Si, K, Na, and REE, and depleted in Mg and Ca, with contents of SiO2 (70.8% to 74.4%), Na2O+K2O (8.8% to 10.2%), CaO (0.93% to 1.44%), and MgO (0.14% to 0.48%). REE is characterized by obvious negative Eu anomaly. Rb, Th, U, K, Pb, Nb, Zr and Hf elements are rich in the granite while Ba, Sr, P, Ti and Eu are deplete. The granite has a high (Zr+Nb+Ce+Y) abundance and 104 Ga/Al ratios. Petrology, major and trace elements data all indicate that the Hua-niushan granite is A-type granite which intruded in a post-collisional extensional tectonic setting. The magma was dominantly sourced from partial melting of crustal intermediate-felsic igneous rocks. Intensive magmatic activities and Au-Cu-Mo mineralization occurred throughout the Beishan orogenic belt during the period from ca. 240 to 220 Ma.  相似文献   
148.
For the Quaternary and Neogene, aragonitic biogenic and abiogenic carbonates are frequently exploited as archives of their environment. Conversely, pre‐Neogene aragonite is often diagenetically altered and calcite archives are studied instead. Nevertheless, the exact sequence of diagenetic processes and products is difficult to disclose from naturally altered material. Here, experiments were performed to understand biogenic aragonite alteration processes and products. Shell subsamples of the bivalve Arctica islandica were exposed to hydrothermal alteration. Thermal boundary conditions were set at 100°C, 175°C and 200°C. These comparably high temperatures were chosen to shorten experimental durations. Subsamples were exposed to different 18O‐depleted fluids for durations between two and twenty weeks. Alteration was documented using X‐ray diffraction, cathodoluminescence, fluorescence and scanning electron microscopy, as well as conventional and clumped isotope analyses. Experiments performed at 100°C show redistribution and darkening of organic matter, but lack evidence for diagenetic alteration, except in Δ47 which show the effects of annealing processes. At 175°C, valves undergo significant aragonite to calcite transformation and neomorphism. The δ18O signature supports transformation via dissolution and reprecipitation, but isotopic exchange is limited by fluid migration through the subsamples. Individual growth increments in these subsamples exhibit bright orange luminescence. At 200°C, valves are fully transformed to calcite and exhibit purple‐blue luminescence with orange bands. The δ18O and Δ47 signatures reveal exchange with the aqueous fluid, whereas δ13C remains unaltered in all experiments, indicating a carbonate‐buffered system. Clumped isotope temperatures in high‐temperature experiments show compositions in broad agreement with the measured temperature. Experimentally induced alteration patterns are comparable with individual features present in Pleistocene shells. This study represents a significant step towards sequential analysis of diagenetic features in biogenic aragonites and sheds light on reaction times and threshold limits. The limitations of a study restricted to a single test organism are acknowledged and call for refined follow‐up experiments.  相似文献   
149.
在济南南部下寒武统朱砂洞组丁家庄段硅质白云岩中,发育地震引起的硅质触变脉、硅质触变沉陷构造和触变楔等软沉积变形构造。从同一地震触变沉陷构造中,采得一组灰黑色燧石样品。使用英国VG354同位素质谱仪和同位素质谱分析方法,测得每个样品的 147Sm/144Nd 和 143Nd/144Nd 同位素值。采用Sm-Nd 等时线法,对燧石进行了测年。获得燧石的成岩年龄为530.8±6.1 Ma,由于软燧石(硅胶体)成岩至少经历了0.1 Ma的时间,所以,地震沉积事件发生在530.7±6.1 Ma,属早寒武世早期。由于测年结果与沧浪铺阶的下界年龄接近,山东朱砂洞组丁家庄段无化石且河南省标准地层剖面中的整个朱砂洞组属沧浪铺阶,这暗示济南地区朱砂洞组丁家庄段属沧浪铺阶。本次测年得到了鲁西地区第1个下寒武统的同位素年龄值,这对确定该地区早寒武世地震沉积事件发生的时间具有参考价值和意义,也为深入研究鲁西地区寒武纪地层提供了新资料。  相似文献   
150.
The subvolcanic Fohberg phonolite (Kaiserstuhl Volcanic Complex, Germany) is an economic zeolite deposit, formed by hydrothermal alteration of primary magmatic minerals. It is mined due to the high (>40 wt%) zeolite content, which accounts for the remarkable zeolitic physicochemical properties of the ground rock. New mineralogical and geochemical studies are carried out (a) to evaluate the manifestation of hydrothermal alteration, and (b) to constrain the physical and chemical properties of the fluids, which promoted hydrothermal replacement. The alkaline intrusion is characterized by the primary mineralogy: feldspathoid minerals, K-feldspar, aegirine–augite, wollastonite, and andradite. The rare-earth elements-phase götzenite is formed during the late-stage magmatic crystallization. Fluid-induced re-equilibration of feldspathoid minerals and wollastonite caused breakdown to a set of secondary phases. Feldspathoid minerals are totally replaced by various zeolite species, calcite, and barite. Wollastonite breakdown results in the formation of various zeolites, calcite, pectolite, sepiolite, and quartz. Zeolites are formed during subsolidus hydrothermal alteration (<150 °C) under alkaline conditions. A sequence of Ca–Na-dominated zeolite species (gonnardite, thomsonite, mesolite) is followed by natrolite. The sequence reflects an increase in \(\log [(a_{{{\text{Na}}^{ + } }} )/(a_{{{\text{H}}^{ + } }} )]\) and decrease in \(\log [(a_{{{\text{Ca}}^{2 + } }} )/(a_{{{\text{H}}^{ + } }}^{2} )]\) of the precipitating fluid. Low radiogenic 87Sr/86Sr values indicate a local origin of the elements necessary for secondary mineral formation from primary igneous phases. In addition, fractures cut the intrusive body, which contain zeolites, followed by calcite and a variety of other silicates, carbonates, and sulfates as younger generations. Stable isotope analysis of late-fracture calcite indicates very late circulation of meteoric fluids and mobilization of organic matter from surrounding sedimentary units.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号