首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   628篇
  免费   28篇
  国内免费   9篇
测绘学   33篇
大气科学   35篇
地球物理   153篇
地质学   275篇
海洋学   74篇
天文学   54篇
综合类   2篇
自然地理   39篇
  2020年   5篇
  2019年   6篇
  2018年   17篇
  2017年   18篇
  2016年   10篇
  2015年   23篇
  2014年   18篇
  2013年   26篇
  2012年   22篇
  2011年   33篇
  2010年   28篇
  2009年   28篇
  2008年   29篇
  2007年   33篇
  2006年   24篇
  2005年   23篇
  2004年   15篇
  2003年   21篇
  2002年   27篇
  2001年   20篇
  2000年   19篇
  1999年   19篇
  1998年   17篇
  1997年   13篇
  1996年   12篇
  1995年   6篇
  1994年   9篇
  1993年   11篇
  1992年   7篇
  1991年   12篇
  1990年   11篇
  1989年   5篇
  1988年   4篇
  1987年   3篇
  1986年   5篇
  1985年   4篇
  1984年   5篇
  1983年   3篇
  1982年   4篇
  1981年   7篇
  1980年   3篇
  1978年   5篇
  1977年   3篇
  1973年   4篇
  1972年   4篇
  1971年   3篇
  1970年   3篇
  1966年   4篇
  1960年   3篇
  1953年   3篇
排序方式: 共有665条查询结果,搜索用时 15 毫秒
91.
92.
We compare the canonical treatment of calcite’s dissolution rate from the literature in a closed system, particle batch reactor, with the alternative approach suggested by Truesdale (Aquat Geochem, 2015). We show that the decay of rate over time can be understood in terms of the evolution and distribution of reactive sites on the surface of these particles. We also emphasize that interpretation of observed rates must not exclude the fundamental role of crystal defects, whose importance is already implicitly reflected in the common form of rate laws in geochemistry. The empirical behavior of overall rate in closed systems, such as those described by Truesdale, may thus reflect relationships between defect centers and the generation of steps over the calcite surface (previously documented for silicates), such that below a critical free energy limit, there is insufficient driving force to open hollow cores and thus a loss of reaction mechanism. Dissolution in this very-near-equilibrium regime will be dependent on the distribution of extant steps and the energetics of new kink site nucleation. However, these sensitivities are complicated in the case of particle systems by grain boundaries, edges, corners, and other terminations. Such discontinuities constitute a defect class whose overall kinetic importance will be strongly tied to particle diameter and which can act independently of the internal strain field imposed by screw and edge dislocations.  相似文献   
93.
This article describes an investigation on runoff generation at different scales in the forested catchment of the Sperbelgraben in the Emmental region (Swiss Prealps) where studies in the field of forest hydrology have a history of 100 years. It focuses on the analysis of soil profiles and the subsequent sprinkling experiments above them (1 m2), as well as on surface runoff measurements on larger plots (50 to 110 m2). In the Sperbelgraben investigation area, two very distinct runoff reactions could be observed. On the one hand, very high production of saturation overland flow was registered on wet areas of gleyic soils, with runoff coefficients between 0·39 and 0·94 for profile irrigation. On the other hand, almost no surface runoff was measured on Cambisols, with the exception at some sites of a hydrophobic reaction detected at the beginning of storms after dry periods (coefficients for profile irrigation: 0·01–0·16). This pattern was observed during 1 m2 soil plot irrigation and on surface runoff plots. Apart from a less distinctive signal of the water‐repellent litter layer on the larger surface runoff plots, the dominant hydrological processes at the two scales are the same. The determined runoff reaction at the two scales corresponds well with information from a forest site type map describing soil and vegetation characteristics and used as a substitute for a soil map in this study. Theoretical considerations describing forest influence on flood discharge are discussed and evaluated to be in good agreement with observations. These findings are a sound foundation for application in hydrological catchment modelling. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
94.
The Canyonlands meteorite weighing 1,520 grams was found near the confluence of the Green and Colorado Rivers, Utah, near lat 38°11′N.; long 109°53′W. It is a shocked, brecciated H6 chondrite containing large black veins which do not differ in composition from the main chondritic mass. A black fusion crust remains on part of the meteorite.  相似文献   
95.
We present results and applications of high-precision timing measurements of the binary millisecond pulsar J1012+5307. Combining our radio timing measurements with results based on optical observations, we derive complete 3D velocity information for this system. Correcting for Doppler effects, we derive the intrinsic spin parameters of this pulsar and a characteristic age of 8.6±1.9 Gyr . Our upper limit for the orbital eccentricity of only 8×10−7 (68 per cent confidence level) is the smallest ever measured for a binary system. We demonstrate that this makes the pulsar an ideal laboratory in which to test certain aspects of alternative theories of gravitation. Our precision measurements suggest deviations from a simple pulsar spin-down timing model, which are consistent with timing noise and the extrapolation of the known behaviour of slowly rotating pulsars.  相似文献   
96.
A synthesis of the majority of the available mare basalt data shows that basalts and glasses came from 28 different volcanic units. The compositions of the magmas of 12 of these units can be calculated with a high degree of confidence. Reasonable estimates can be made for the compositions of nine of the remaining units. In addition, the compositions of three general magma types can be obtained from data derived from the Luna 16, Luna 24, and Apollo 17 fines. The compositional data presented provide a firm basis for the further study of the characteristics of the mare basalt magma source region.  相似文献   
97.
The Kramer Creek, Colorado, chondrite was found in 1966 and identified as a meteorite in 1972. Bulk chemical analysis, particularly the total iron content (20.36%) and the ratio of Fetotal/SiO2 (0.52), as well as the compositions of olivine (Fa21.7) and orthopyroxene (Fs18.3) place the meteorite into the L-group of chondrites. The well-defined chondritic texture of the meteorite, the presence of igneous glass in the chondrules and of low-Ca clinopyroxene, as well as the slight variations in FeO contents of olivine (2.4% MD) and orthopyroxene (5.6% MD) indicate that the chondrite belongs to the type 4 petrologic class.  相似文献   
98.
The eruptive history of the Tequila volcanic field (1600 km2) in the western Trans-Mexican Volcanic Belt is based on 40Ar/39Ar chronology and volume estimates for eruptive units younger than 1 Ma. Ages are reported for 49 volcanic units, including Volcán Tequila (an andesitic stratovolcano) and peripheral domes, flows, and scoria cones. Volumes of volcanic units 1 Ma were obtained with the aid of field mapping, ortho aerial photographs, digital elevation models (DEMs), and ArcGIS software. Between 1120 and 200 kyrs ago, a bimodal distribution of rhyolite (~35 km3) and high-Ti basalt (~39 km3) dominated the volcanic field. Between 685 and 225 kyrs ago, less than 3 km3 of andesite and dacite erupted from more than 15 isolated vents; these lavas are crystal-poor and show little evidence of storage in an upper crustal chamber. Approximately 200 kyr ago, ~31 km3 of andesite erupted to form the stratocone of Volcán Tequila. The phenocryst assemblage of these lavas suggests storage within a chamber at ~2–3 km depth. After a hiatus of ~110 kyrs, ~15 km3 of andesite erupted along the W and SE flanks of Volcán Tequila at ~90 ka, most likely from a second, discrete magma chamber located at ~5–6 km depth. The youngest volcanic feature (~60 ka) is the small andesitic volcano Cerro Tomasillo (~2 km3). Over the last 1 Myr, a total of 128±22 km3 of lava erupted in the Tequila volcanic field, leading to an average eruption rate of ~0.13 km3/kyr. This volume erupted over ~1600 km2, leading to an average lava accumulation rate of ~8 cm/kyr. The relative proportions of lava types are ~22–43% basalt, ~0.4–1% basaltic andesite, ~29–54% andesite, ~2–3% dacite, and ~18–40% rhyolite. On the basis of eruptive sequence, proportions of lava types, phenocryst assemblages, textures, and chemical composition, the lavas do not reflect the differentiation of a single (or only a few) parental liquids in a long-lived magma chamber. The rhyolites are geochemically diverse and were likely formed by episodic partial melting of upper crustal rocks in response to emplacement of basalts. There are no examples of mingled rhyolitic and basaltic magmas. Whatever mechanism is invoked to explain the generation of andesite at the Tequila volcanic field, it must be consistent with a dominantly bimodal distribution of high-Ti basalt and rhyolite for an 800 kyr interval beginning ~1 Ma, which abruptly switched to punctuated bursts of predominantly andesitic volcanism over the last 200 kyrs.Electronic Supplementary Material Supplementary material is available in the online version of this article at Editorial responsility: J. Donnelly-NolanThis revised version was published online in January 2005 with corrections to Tables 1 and 3.An erratum to this article can be found at  相似文献   
99.
100.
Both hypervelocity impact and dynamic spall experiments were carried out on a series of well-indurated samples of gabbro to examine the relation between spall strength and maximum spall ejecta thickness. The impact experiments carried out with 0.04- to 0.2-g, 5- to 6-km/sec projectiles produced decimeter- to centimeter-sized craters and demonstrated crater efficiencies of 6 × 10?9 g/erg, an order of magnitude greater than in metal and some two to three times that of previous experiments on less strong igneous rocks. Most of the crater volume (some 60 to 80%) is due to spall failure. Distribution of cumulative fragment number, as a function of mass of fragments with masses greater than 0.1 g yield values of b = d(log Nf)/d log(m) ?0.5 ?0.6, where N is the cumulative number of fragments and m is the mass of fragments. These values are in agreement or slightly higher than those obtained for less strong rocks and indicate that a large fraction of the ejecta resides in a few large fragments. The large fragments are plate-like with mean values of B/A and C/A 0.8 0.2, respectively (A = long, B = termediate, and C = short fragment axes). The small equant-dimensioned fragments (with mass < 0.1 g and B ~ 0.1 mm) represent material which has been subjected to shear failure. The dynamic tensile strenght of San Marcos gabbro was determined at strain rates of 104 to 105 sec?1 to be 147 ± 9 MPa. This is 3 to 10 times greater than inferred from quasi-static (strain rate 100 sec?1) loading experiments. Utilizing these parameters in a continuum fracture model predicts a tensile strenght of σmε?[0.25–0.3], where ε is strain rate. It is suggested that the high spall strenght of basic igneous rocks gives rise to enhanced cratering efficiencies due to spall in the <102-m crater diamter strength-dominated regime. Although the impact spall mechanism can enhance cratering efficiencies it is unclear that resulting spall fragments achieve sufficient velocities such that fragments of basic rocks can escape from the surfaces of planets such as the Moon or Mars.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号