首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   628篇
  免费   28篇
  国内免费   9篇
测绘学   33篇
大气科学   35篇
地球物理   153篇
地质学   275篇
海洋学   74篇
天文学   54篇
综合类   2篇
自然地理   39篇
  2020年   5篇
  2019年   6篇
  2018年   17篇
  2017年   18篇
  2016年   10篇
  2015年   23篇
  2014年   18篇
  2013年   26篇
  2012年   22篇
  2011年   33篇
  2010年   28篇
  2009年   28篇
  2008年   29篇
  2007年   33篇
  2006年   24篇
  2005年   23篇
  2004年   15篇
  2003年   21篇
  2002年   27篇
  2001年   20篇
  2000年   19篇
  1999年   19篇
  1998年   17篇
  1997年   13篇
  1996年   12篇
  1995年   6篇
  1994年   9篇
  1993年   11篇
  1992年   7篇
  1991年   12篇
  1990年   11篇
  1989年   5篇
  1988年   4篇
  1987年   3篇
  1986年   5篇
  1985年   4篇
  1984年   5篇
  1983年   3篇
  1982年   4篇
  1981年   7篇
  1980年   3篇
  1978年   5篇
  1977年   3篇
  1973年   4篇
  1972年   4篇
  1971年   3篇
  1970年   3篇
  1966年   4篇
  1960年   3篇
  1953年   3篇
排序方式: 共有665条查询结果,搜索用时 31 毫秒
111.
112.
This paper resolves the origin of clay hummock micro-topography in seasonal wetlands of the Drakensberg Foothills, providing a review and appraisal of previously-suggested mechanisms of hummock formation in the context of new field and laboratory data. Field surveys revealed neo-formation of clay hummocks in a river channel that had been abandoned in c.1984. Fresh earthworm castings were located atop hummocks protruding from inundated abandoned channel margins. Earthworm castings, and sediment cores taken in hummocks and adjacent hollows, were analysed for soil-adsorbed carbon and nitrogen using an HCN analyser, and for 210Pb activity using alpha-geochronology. 210Pb activity profiles suggest relative enrichment of the isotope in hummocks, and relative depletion in adjacent hollows. Earthworm castings are characterised by very high 210Pb activity, as well as high C and N contents. Hummocks have significantly higher C and N contents than adjacent hollows. Results suggest that it is the foraging activity of earthworms in litter-rich seasonal wetland hollows, and repeated excretion of castings atop adjacent hummocks, that is responsible for the elemental enrichment observed. The paper presents a conceptual model of hummock formation in wetlands through interactions between hydrogeomorphology and earthworm activity, and illustrates a mechanism of biogeomorphic inheritance through which ordered patterns of preferential flow can emerge in ecosystems. Further implications of hummock formation and nodal accumulation of nutrients are considered in relation to wetland resilience and regulatory ecosystem service provision.© 2018 John Wiley & Sons, Ltd.  相似文献   
113.
Recent data from exposures of terrestrial Pleistocene sediments in the Fraser Lowland of southwestern British Columbia reveal at least two ‘Bond cycles’ within Oxygen Isotope Stage 2. The maximum of the Coquitlam Stade coincides with the timing of Heinrich event H2, the Port Moody Interstade with Dansgaard–Oeschger (D–O) interstade 2, the maximum of the Vashon Stade with H1, and the Fort Langley interval with D–O interstade 1. The Sumas Stade apparently preceded H0 (Younger Dryas) but could have been in response to the same climatic signal. The timing of Sumas advances may be explained by a combination of glacio-isostatic rebound, destabilisation of the ice margin, and rapid movement over a short distance on soft muddy beds of a rising sea floor, thereby leading the timing of North Atlantic events by hundreds of years. In contrast, Coquitlam and Vashon advances were mainly over permeable glaciofluvial sediments and because of this their maxima probably did not precede the timing of H2 and H1. The Port Moody Interstade coincided with the global Last Glacial Maximum, due in part to the moderating effect of moist summer storms in a southward-shifted jet stream that influenced the Fraser Lowland at that time. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   
114.
Groundwater‐surface water (GW‐SW) interaction in numerical groundwater flow models is generally simulated using a Cauchy boundary condition, which relates the flow between the surface water and the groundwater to the product of the head difference between the node and the surface water level, and a coefficient, often referred to as the “conductance.” Previous studies have shown that in models with a low grid resolution, the resistance to GW‐SW interaction below the surface water bed should often be accounted for in the parameterization of the conductance, in addition to the resistance across the surface water bed. Three conductance expressions that take this resistance into account were investigated: two that were presented by Mehl and Hill (2010) and the one that was presented by De Lange (1999). Their accuracy in low‐resolution models regarding salt and water fluxes to a dense drainage network in a confined aquifer system was determined. For a wide range of hydrogeological conditions, the influence of (1) variable groundwater density; (2) vertical grid discretization; and (3) simulation of both ditches and tile drains in a single model cell was investigated. The results indicate that the conductance expression of De Lange (1999) should be used in similar hydrogeological conditions as considered in this paper, as it is better taking into account the resistance to flow below the surface water bed. For the cases that were considered, the influence of variable groundwater density and vertical grid discretization on the accuracy of the conductance expression of De Lange (1999) is small.  相似文献   
115.
Although temperature is an important determinant of many biogeochemical processes in groundwater, very few studies have attempted to forecast the response of groundwater temperature to future climate warming. Using a composite linear regression model based on the lagged relationship between historical groundwater and regional air temperature data, empirical forecasts were made of groundwater temperature in several aquifers in Switzerland up to the end of the current century. The model was fed with regional air temperature projections calculated for greenhouse‐gas emissions scenarios A2, A1B, and RCP3PD. Model evaluation revealed that the approach taken is adequate only when the data used to calibrate the models are sufficiently long and contain sufficient variability. These conditions were satisfied for three aquifers, all fed by riverbank infiltration. The forecasts suggest that with respect to the reference period 1980 to 2009, groundwater temperature in these aquifers will most likely increase by 1.1 to 3.8 K by the end of the current century, depending on the greenhouse‐gas emissions scenario employed.  相似文献   
116.
Using a subset of the SEG Advanced Modeling Program Phase I controlled‐source electromagnetic data, we apply our standard controlled‐source electromagnetic interpretation workflows to delineate a simulated hydrocarbon reservoir. Experience learned from characterizing such a complicated model offers us an opportunity to refine our workflows to achieve better interpretation quality. The exercise proceeded in a blind test style, where the interpreting geophysicists did not know the true resistivity model until the end of the project. Rather, the interpreters were provided a traditional controlled‐source electromagnetic data package, including electric field measurements, interpreted seismic horizons, and well log data. Based on petrophysical analysis, a background resistivity model was established first. Then, the interpreters started with feasibility studies to establish the recoverability of the prospect and carefully stepped through 1D, 2.5D, and 3D inversions with seismic and well log data integrated at each stage. A high‐resistivity zone is identified with 1D analysis and further characterized with 2.5D inversions. Its lateral distribution is confirmed with a 3D anisotropic inversion. The importance of integrating all available geophysical and petrophysical data to derive more accurate interpretation is demonstrated.  相似文献   
117.
A land data assimilation system (LDAS) can merge satellite observations (or retrievals) of land surface hydrological conditions, including soil moisture, snow, and terrestrial water storage (TWS), into a numerical model of land surface processes. In theory, the output from such a system is superior to estimates based on the observations or the model alone, thereby enhancing our ability to understand, monitor, and predict key elements of the terrestrial water cycle. In practice, however, satellite observations do not correspond directly to the water cycle variables of interest. The present paper addresses various aspects of this seeming mismatch using examples drawn from recent research with the ensemble-based NASA GEOS-5 LDAS. These aspects include (1) the assimilation of coarse-scale observations into higher-resolution land surface models, (2) the partitioning of satellite observations (such as TWS retrievals) into their constituent water cycle components, (3) the forward modeling of microwave brightness temperatures over land for radiance-based soil moisture and snow assimilation, and (4) the selection of the most relevant types of observations for the analysis of a specific water cycle variable that is not observed (such as root zone soil moisture). The solution to these challenges involves the careful construction of an observation operator that maps from the land surface model variables of interest to the space of the assimilated observations.  相似文献   
118.
The Pagassitikos Gulf in Greece is a semi-enclosed bay with a maximum depth of 102 m. According to the present-day bathymetric configuration and the sea level during the latest Pleistocene, the gulf would have been isolated from the open sea, forming a palaeolake since ~32 cal. ka b.p. Sediment core B-4 was recovered from the deepest sector of the gulf and revealed evidence of a totally different depositional environment in the lowest part of the core: this contained light grey-coloured sediments, contrasting strongly with overlying olive grey muds. Multi-proxy analyses showed the predominance of carbonate minerals (aragonite, dolomite and calcite) and gypsum in the lowest part of the core. Carbonate mineral deposition can be attributed to autochthonous precipitation that took place in a saline palaeolake with high evaporation rates during the last glacial–early deglacial period; the lowest core sample to be AMS 14C dated provided an age of 19.53 cal. ka b.p. The palaeolake was presumably reconnected to the open sea at ~13.2 cal. ka b.p. during the last sea-level rise, marking the commencement of marine sedimentation characterised by the predominance of terrigenous aluminosilicates and fairly constant depositional conditions lasting up to the present day.  相似文献   
119.
The Jan Mayen microcontinent was as a result of two major North Atlantic evolutionary cornerstones—the separation of Greenland from Norway (~54 Ma), accompanied by voluminous volcanic activity, and the jump of spreading from the Aegir to the Kolbeinsey ridge (~33 Ma), which resulted in the separation of the microcontinent itself from Eastern Greenland (~24 Ma). The resulting eastern and western sides of the Jan Mayen microcontinent are respectively volcanic and non-volcanic rifted margins. Until now the northern boundary of the microcontinent was not precisely known. In order to locate this boundary, two combined refraction and reflection seismic profiles were acquired in 2006: one trending S–N and consisting of two separate segments south and north of the island of Jan Mayen respectively, and the second one trending SW–NE east of the island. Crustal P-wave velocity models were derived and constrained using gravity data collected during the same expedition. North of the West Jan Mayen Fracture Zone (WJMFZ) the models show oceanic crust that thickens from west to east. This thickening is explained by an increase in volcanic activity expressed as a bathymetric high and most likely related to the proximity of the Mohn ridge. East of the island and south of the WJMFZ, oceanic Layers 2 and 3 have normal seismic velocities but above normal average crustal thickness (~11 km). The similarity of the crustal thickness and seismic velocities to those observed on the conjugate M?re margin confirm the volcanic origin of the eastern side of the microcontinent. Thick continental crust is observed in the southern parts of both profiles. The northern boundary of the microcontinent is a continuation of the northern lineament of the East Jan Mayen Fracture Zone. It is thus located farther north than previously assumed. The crust in the middle parts of both models, around Jan Mayen island, is more enigmatic as the data suggest two possible interpretations—Icelandic type of oceanic crust or thinned and heavily intruded continental crust. We prefer the first interpretation but the latter cannot be completely ruled out. We infer that the volcanism on Jan Mayen is related to the Icelandic plume.  相似文献   
120.
This paper describes results from a geophysical study in the Vestbakken Volcanic Province, located on the central parts of the western Barents Sea continental margin, and adjacent oceanic crust in the Norwegian-Greenland Sea. The results are derived mainly from interpretation and modeling of multichannel seismic, ocean bottom seismometer and land station data along a regional seismic profile. The resulting model shows oceanic crust in the western parts of the profile. This crust is buried by a thick Cenozoic sedimentary package. Low velocities in the bottom of this package indicate overpressure. The igneous oceanic crust shows an average thickness of 7.2 km with the thinnest crust (5–6 km) in the southwest and the thickest crust (8–9 km) close to the continent-ocean boundary (COB). The thick oceanic crust is probably related to high mantle temperatures formed by brittle weakening and shear heating along a shear system prior to continental breakup. The COB is interpreted in the central parts of the profile where the velocity structure and Bouguer anomalies change significantly. East of the COB Moho depths increase while the vertical velocity gradient decreases. Below the assumed center for Early Eocene volcanic activity the model shows increased velocities in the crust. These increased crustal velocities are interpreted to represent Early Eocene mafic feeder dykes. East of the zone of volcanoes velocities in the crust decrease and sedimentary velocities are observed at depths of more than 10 km. The amount of crustal intrusions is much lower in this area than farther west. East of the Kn?legga Fault crystalline basement velocities are brought close to the seabed. This fault marks the eastern limit of thick Cenozoic and Mesozoic packages on central parts of the western Barents Sea continental margin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号