首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1382篇
  免费   36篇
  国内免费   16篇
测绘学   36篇
大气科学   109篇
地球物理   364篇
地质学   535篇
海洋学   57篇
天文学   191篇
综合类   7篇
自然地理   135篇
  2021年   19篇
  2020年   22篇
  2019年   12篇
  2018年   26篇
  2017年   31篇
  2016年   33篇
  2015年   28篇
  2014年   38篇
  2013年   67篇
  2012年   55篇
  2011年   66篇
  2010年   41篇
  2009年   44篇
  2008年   46篇
  2007年   50篇
  2006年   58篇
  2005年   50篇
  2004年   51篇
  2003年   45篇
  2002年   39篇
  2001年   23篇
  2000年   24篇
  1999年   28篇
  1998年   24篇
  1997年   30篇
  1996年   13篇
  1995年   36篇
  1993年   17篇
  1992年   10篇
  1991年   15篇
  1990年   18篇
  1989年   15篇
  1988年   12篇
  1987年   16篇
  1986年   15篇
  1985年   17篇
  1984年   20篇
  1983年   14篇
  1982年   13篇
  1981年   10篇
  1980年   13篇
  1979年   15篇
  1978年   13篇
  1977年   12篇
  1976年   8篇
  1975年   17篇
  1974年   8篇
  1973年   8篇
  1970年   11篇
  1954年   8篇
排序方式: 共有1434条查询结果,搜索用时 562 毫秒
21.
The previously studied 2-post-Newtonian approximation of the gravitational field of a nonstationary spherically symmetric star in flat space-time theory of gravitation is applied to the motion of a test particle in the orbit of the star. The orbit is different from the one of Einstein's general theory of relativity. A general formula for the deviation of the orbit from a circle is given. In the special case of a radially oscillating star, being homogeneous to Newtonian accuracy, the orbit of the test particle also oscillates radially with small amplitude about a fixed orbit (circle).  相似文献   
22.
During quiescent auroras the large-scale electric field is essentially irrotational. The volume formed by the plasma sheet and its extension into the auroral oval is connected to an external source by electric currents, which enter and leave the volume at different electric potentials and which supply sufficient energy to support the auroral activity. The location of the actual acceleration of particles depends on the internal distribution of electric fields and currents. One important feature is the energization of the carriers of the cross-tail current and another is the acceleration of electrons precipitated through relatively low-altitude magnetic-field-aligned potential drops.Substorm auroras depend on rapid and (especially initially) localized release of energy that can only be supplied by tapping stored magnetic energy. The energy is transmitted to the charged particle via electric inductive fields.The primary electric field due to changing electric currents is redistributed in a complicated way—but never extinguished—by polarization of charges. As a consequence, any tendency of the plasma to suppress magnetic-field-aligned components of the electric fields leads to a corresponding enhancement of the transverse component.  相似文献   
23.
Observations of the vertical profile of hydrogen fluoride (HF) vapor in the stratosphere and of the vertical column amounts of HF above certain altitudes were made using a variety of spectroscopic instruments in the 1982 and 1983 Balloon Intercomparison Campaigns. Both emission instruments working in the far infrared spectral region and absorption instruments using solar occultation in the 2.5m region were employed. No systematic differences were seen in results from the two spectral regions. A mean profile from 20–45 km is presented, with uncertainties ranging from 20% to 50%. Total columns measured from ground and from 12 km are consistent with the profile if the mixing ratio for HF is small in the tropophere and low stratosphere.  相似文献   
24.
Cores and exposed cliff sections in salt marshes around Ho Bugt, a tidal embayment in the northernmost part of the Danish Wadden Sea, were subjected to 14C dating and litho- and biostratigraphical analyses to reconstruct paleoenvironmental changes and to establish a late Holocene relative sea-level history. Four stages in the late Holocene development of Ho Bugt can be identified: (1) groundwater-table rise and growth of basal peat (from at least 2300 BC to AD 0); (2) salt-marsh formation (0 to AD 250); (3) a freshening phase (AD 250 to AD 1600?), culminating in the drying out of the marshes and producing a distinct black horizon followed by an aeolian phase with sand deposition; and (4) renewed salt-marsh deposition (AD 1600? to present). From 16 calibrated AMS radiocarbon ages on fossil plant fragments and 4 calibrated conventional radiocarbon ages on peat, we reconstructed a local relative sea-level history that shows a steady sea-level rise of 4 m since 4000 cal yr BP. Contrary to suggestions made in the literature, the relative sea-level record of Ho Bugt does not contain a late Holocene highstand. Relative sea-level changes at Ho Bugt are controlled by glacio-isostatic subsidence and can be duplicated by a glacial isostatic adjustment model in which no water is added to the world's oceans after ca. 5000 cal yr BP.  相似文献   
25.
Severe rainfall in mid October, 2003 produced the largest floods in almost a century of record on rivers in the Cordillera of southwestern British Columbia. Sediment deposited in Lillooet Lake as a result of this event is clearly distinguished by stratigraphy, colour, texture, magnetic properties, and organic content. Each of these physical properties is related to the lacustrine processes, especially turbid underflow, that distributed the sediment through the lake. The flood, which lasted less than a week, delivered 8–12 times the amount of sediment that accumulates in most entire years in the deepest, central parts of the lake. Recognition of events of this type in the stratigraphic record offers a means of assessing the changing nature of extreme hydroclimatic events, and their relation to more ubiquitous, lower-energy processes.  相似文献   
26.
Stable isotopic compositions and concentrations of total sedimentary sulphur (S) were determined in cores from 6 lakes in the acid-sensitive Muskoka-Haliburton region of south-central Ontario. The isotopic composition of S in deep sediment (> ~ 20 cm) was approximately constant in all lakes, and indicated a pre-industrial δ 34S value between +4.0 and +5.3‰, which is similar to current bulk deposition. Similarly, total S concentrations in deep sediment were relatively low (1.9–5 mg S g−1 dwt) and approximately constant with depth within cores. All lakes exhibited up-core increases in total S and decreases in δ 34S at a depth corresponding to the beginning of industrialization in the Great Lakes region ( ~ 1900), resulting in a generally reciprocal depth pattern between total S concentration and δ 34S ratios. While initial shifts in total S and δ 34S were likely due to enhanced SO4 reduction of newly available anthropogenic SO4, both the magnitude and pattern of up-core S enrichment and shifts in δ 34S varied greatly among lakes, and did not match changes in S deposition post 1900. Differences between lakes in total S and δ 34S were not related to any single hydrologic (e.g., residence time) or physical (e.g., catchment-area-to-lake area ratio) lake characteristic. This work indicates that sediment cores do not provide consistent records of changes in post-industrial S deposition in this region, likely due to redox-related mobility of S in upper sediment.  相似文献   
27.
The   M w γ 9.0  2004 December 26 Sumatra-Andaman and   M w = 8.7  2005 March 28 Nias earthquakes, which collectively ruptured approximately 1800 km of the Andaman and Sunda subduction zones, are expected to be followed by vigorous viscoelastic relaxation involving both the upper and lower mantle. Because of these large spatial dimensions it is desirable to fully account for gravitational coupling effects in the relaxation process. We present a stable method of computing relaxation of a spherically-stratified, compressible and self-gravitating viscoelastic Earth following an impulsive moment release event. The solution is cast in terms of a spherical harmonic expansion of viscoelastic normal modes. For simple layered viscoelastic models, which include a low-viscosity oceanic asthenosphere, we predict substantial post-seismic effects over a region several 100s of km wide surrounding the eastern Indian Ocean. We compare observed GPS time-series from ten regional sites (mostly in Thailand and Indonesia), beginning in 2004 December, with synthetic time-series that include the coseismic and post-seismic effects of the 2004 December 26 and 2005 March 28 earthquakes. A viscosity structure involving a biviscous (Burgers body) rheology in the asthenosphere explains the pattern and amplitude of post-seismic offsets remarkably well.  相似文献   
28.
29.
We propose a model for the generation of average MORBs based on phase relations in the CaO-MgO-Al2O3-SiO2-CO2 system at pressures from 3 to 7 GPa and in the CaO-MgO-Al2O3-SiO2-Na2O-FeO (CMASNF) system at pressures from ∼0.9 to 1.5 GPa. The MELT seismic tomography (Forsyth et al., 2000) across the East Pacific Rise shows the largest amount of melt centered at ∼30-km depth and lesser amounts at greater depths. An average mantle adiabat with a model-system potential temperature (Tp) of 1310°C is used that is consistent with this result. In the mantle, additional minor components would lower solidus temperatures ∼50°C, which would lower Tp of the adiabat for average MORBs to ∼1260°C. The model involves generation of carbonatitic melts and melts that are transitional between carbonatite and kimberlite at very small melt fractions (<0.2%) in the low-velocity zone at pressures of ∼2.6 to 7 GPa in the CMAS-CO2 system, roughly the pressure range of the PREM low-velocity zone. These small-volume, low-viscosity melts are mixed with much larger volumes of basaltic melt generated at the plagioclase-spinel lherzolite transition in the pressure range of ∼0.9 to 1.5 GPa.In this model, solidus phase relations in the pressure range of the plagioclase-spinel lherzolite transition strongly, but not totally, control the major-element characteristics of MORBs. Although the plagioclase-spinel lherzolite transition suppresses isentropic decompression melting in the CMAS system, this effect does not occur in the topologically different and petrologically more realistic CMASNF system. On the basis of the absence of plagioclase from most abyssal peridotites, which are the presumed residues of MORB generation, we calculate melt productivity during polybaric fractional melting in the plagioclase-spinel lherzolite transition interval at exhaustion of plagioclase in the residue. In the CMASN system, these calculations indicate that the total melt productivity is ∼24%, which is adequate to produce the oceanic crust. The residual mineral proportions from this calculation closely match those of average abyssal peridotites.Melts generated in the plagioclase-spinel lherzolite transition are compositionally distinct from all MORB glasses, but do not have a significant fractional crystallization trend controlled by olivine alone. They reach the composition field of erupted MORBs mainly by crystallization of both plagioclase and olivine, with initial crystallization of either one of these phases rapidly joined by the other. This is consistent with phenocryst assemblages and experimental studies of the most primitive MORBs, which do not show an olivine-controlled fractionation trend. The model is most robust for the eastern Pacific, where an adiabat with a Tp of ∼1260°C is supported by the MELT seismic data and where the global inverse correlation of (FeO)8 with (Na2O)8 is weak. Average MORBs worldwide also are well modeled. A heterogeneous mantle consisting of peridotite of varying degrees of major-element depletion combined with phase-equilibrium controls in the plagioclase-spinel lherzolite transition interval would produce the form of the global correlations at a constant Tp, which suggests a modest range of Tp along ridges. Phase-composition data for the CMASNF system are presently not adequate for quantitative calculation of (FeO)8-(Na2O)8-(CaO/Al2O3)8 systematics in terms of this model. The near absence of basalts in the central portion of the Gakkel Ridge suggests a lower bound for Tp along ridges of ∼1240°C, a potential temperature just low enough to miss the solidus for basalt production at ∼0.9 GPa. An upper bound for Tp is poorly constrained, but the complete absence of picritic glasses in Iceland and the global ridge system suggests an upper bound of ∼1400°C. In contrast to some previous models for MORB generation that emphasize large potential temperature variations in a relatively homogeneous peridotitic mantle, our model emphasizes modest potential temperature variations in a peridotitic mantle that shows varying degrees of heterogeneity. Calculations indicate that melt productivity changes from 0 to 24% for a change in Tp from 1240 to 1260°C, effectively producing a rapid increase to full crustal thickness or decrease to none as ridges appear and disappear.  相似文献   
30.
This paper presents results recently obtained for generating site-specific ground motions needed for design of critical facilities. The general approach followed in developing these ground motions using either deterministic or probabilistic criteria is specification of motions for rock outcrop or very firm soil conditions followed by adjustments for site-specific conditions. Central issues in this process include development of appropriate attenuation relations and their uncertainties, differences in expected motions between Western and Eastern North America, and incorporation of site-specific adjustments that maintain the same hazard level as the control motions, while incorporating uncertainties in local dynamic material properties. For tectonically active regions, such as the Western United States (WUS), sufficient strong motion data exist to constrain empirical attenuation relations for M up to about 7 and for distances greater than about 10–15 km. Motions for larger magnitudes and closer distances are largely driven by extrapolations of empirical relations and uncertainties need to be substantially increased for these cases.

For the Eastern United States (CEUS), due to the paucity of strong motion data for cratonic regions worldwide, estimation of strong ground motions for engineering design is based entirely on calibrated models. The models are usually calibrated and validated in the WUS where sufficient strong motion data are available and then recalibrated for applications to the CEUS. Recalibration generally entails revising parameters based on available CEUS ground motion data as well as indirect inferences through intensity observations. Known differences in model parameters such as crustal structure between WUS and CEUS are generally accommodated as well. These procedures are examined and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号