首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   89篇
  免费   0篇
大气科学   1篇
地球物理   5篇
地质学   68篇
海洋学   2篇
天文学   11篇
自然地理   2篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2018年   7篇
  2017年   2篇
  2016年   1篇
  2014年   5篇
  2013年   5篇
  2012年   2篇
  2011年   6篇
  2010年   2篇
  2009年   8篇
  2008年   8篇
  2007年   12篇
  2006年   12篇
  2005年   3篇
  2003年   2篇
  2002年   2篇
  1995年   1篇
  1989年   1篇
  1985年   1篇
  1984年   1篇
  1975年   1篇
排序方式: 共有89条查询结果,搜索用时 31 毫秒
31.
32.
Journal of Paleolimnology - We used waterborne Ground Penetrating Radar (GPR) for mapping stratigraphic boundaries, sedimentation environments, and specific features of lacustrine sediments of...  相似文献   
33.
34.
35.
The cameras carried onboard the flyby missions to comet P/Halleyin 1986 imaged the near nuclear jet activity fromseveral spatial directions. The observed, very structured near nucleardust jets were considered at that timeas the result of dust emission from well localized active surface regions(without supporting 3-D model computations, however).Based on the first, recently developed 3-D gas dynamical model ofP/Halley's activity,we have been shown that jet features can be reproduced assuming ahomogeneous dusty icenucleus surface. The dust in the collisional near nuclear comais concentrated along the gas flow discontinuities resulting from thecomplicated surface orography, creating the visual impression ofdust jets. We present here the results of these calculations forthe near nucleus dust distributions,and we compare them with the direct observations made during thethree Halley flybys (Vega 1, Vega 2, and Giotto).  相似文献   
36.
Results of this study of titanite samples collected from silicate rocks and apatite-nepheline-(sphene) ores from Paleozoic polyphase alkaline nepheline syenite complexes of the Khibiny and Lovozero massifs revealed the possibility of their in-situ U-Pb dating using sensitive high-resolution ion microprobe SHRIMP-II with an accuracy of 1.0-1.5%, which is comparable with that of U-Pb zircon analysis. Employing different approaches to age determination of the formation of the U-Pb system of titanites, the combined isochrons and mixing lines were plotted from the data obtained from the differentiated complex samples (121 analyses of five Khibiny samples and 52 analyses of one Lovozero sample) and apatite-nepheline ores (120 analyses of five Khibiny samples and 88 analyses of three Lovozero samples). They indicate synchronous crystallization of titanite in silicate rocks throughout the complexes: 374.1 ± 3.7 Ma for the Khibiny massif and 380.9 ± 4.5 Ma for the Lovozero massif, and attest to the later formation of phosphate-rare-metal ores: 371.0 ± 4.2 and 361.4 ± 3.2 Ma, respectively. The relatively delayed ore mineralization specific to the Lovozero massif can be accounted for the significantly lower volumes of magmatic melt and ore fluid involved, different thermal conditions, and the pattern of the investigated mineralization. As such, the obtained U-Pb data from titanite make it possible to limit significantly the time interval (most likely, not exceeding 15-20 Ma) comprising the evolution and activity of the ore-magmatic system of major agpaitic complexes, which is probably associated with plume magmatism.  相似文献   
37.
U–Pb (SHRIMP) determinations on detrital zircons from the Early Paleozoic Gelnica Terrane metasandstones and their Permian overlap sediments of the Inner Western Carpathian Southern Gemeric Unit define five age populations based on age-probability plots. The metasandstones were sampled for detrital zircons from six stratigraphic levels, four of them in the Late Cambrian/Ordovician Gelnica Terrane metasandstones and the two in Permian envelope sequence. The data set includes 84 U–Pb ages for individual detrital zircons. These ages are combined with the previously dated inherited zircons from the associated metavolcanites (n?=?31). The majority of the pre-Permian detrital and inherited zircons (95%) belong to the three main populations: population A—the Paleoproterozoic/Neoarchean ages ranging from 1.75 to 2.6?Ga; population B—the Mesoproterozoic ages with the range of 0.9 to 1.1?Ga; population C—the Neoproterozoic ages, ranging from 560 to 807?Ma. The detrital zircon age spectrum from the basal Permian sediments reflects the strong recycling from the underlying Gelnica Terrane, with the presence of the dominant Precambrian C and B populations (94% of total), including the minor populations A. The range of the detrital zircon ages from the Late Permian sandstones is wider, with additional population D, ranging from 497 to 450?Ma and population E with a time span from 369 to 301?Ma. Within the Late Permian detrital zircon assemblage, the Proterozoic population A?+?B?+?C form only 25% of total. The detrital zircon data suggest that the Gelnica Terrane belongs to the peri-Gondwanan terrane with a source area located on the northwestern margin of Gondwana close to Amazonia. This terrane should have travelled a long distance in the Phanerozoic times.  相似文献   
38.
An iterative approach is used to construct spherically symmetric equilibrium models with an anisotropic velocity distribution. The potentialities of the method have been tested on models with known distribution functions, the Osipkov-Merritt models. It is shown that models that differ significantly from the Osipkov-Merritt models can be constructed. An N-body model of a dark halo with a density distribution that approximates the results of cosmological simulations (the Navarro-Frenk-White model) has been constructed. The anisotropy profile has been taken to be similar to that yielded by cosmological simulations. The constructed models can serve as direct input data for investigating the dynamics and stability of such systems in N-body simulations.  相似文献   
39.
Abstract

We analyzed the relationship between an index of Great Lakes winter severity (winters 1950–1998) and atmospheric circulation characteristics. Classification and Regression Tree analysis methods allowed us to develop a simple characterization of warm, normal and cold winters in terms of teleconnection indices and their combinations. Results are presented in the form of decision trees. The single most important classifier for warm winters was the Polar/Eurasian index (POL). A majority of warm winters (12 out of 15) occurred when this index was substantially positive (POL > 0.23). There were no cold winters when this condition was in place. Warm winters are associated with a positive phase of the Western Pacific pattern and El Niño events in the equatorial Pacific. The association between cold winters and La Niña events was much weaker. Thus, the effect of the El Niño/Southern Oscillation (ENSO) on severity of winters in the Great Lakes basin is not symmetric. The structure of the relationship between the index of winter severity and teleconnection indices is more complex for cold winters than for warm winters. It takes two or more indices to successfully classify cold winters. In general, warm winters are characterized by a predominantly zonal type of atmospheric circulation over the Northern Hemisphere (type W1). Within this type of circulation it is possible to distinguish two sub‐types, W2 and W3. Sub‐type W2 is characterized by a high‐pressure cell over North America, which is accompanied by enhanced cyclonic activity over the eastern North Pacific. Due to a broad southerly “anomalous” flow, surface air temperatures (SATs) are above normal almost everywhere over the continent. During the W3 sub‐type, the polar jet stream over North America, instead of forming a typical ridge‐trough pattern, is almost entirely zonal, thus effectively blocking an advection of cold Arctic air to the south. Cold winters tend to occur when the atmospheric circulation is more meridional (type C1). As with warm winters, there are two sub‐types of circulation, C2 and C3. In the case of C2, the jet stream loops southward over the western part of North America, but its northern excursion over the eastern part is suppressed. In this situation, the probability of a cold winter is higher for Lake Superior than for the lower Great Lakes. Sub‐type C3 is characterized by an amplification of the climatological ridge over the Rockies and the trough over the East Coast. The strongest negative SAT anomalies are located south of the Great Lakes basin, so that the probability of a cold winter is higher for the lower Great Lakes than for Lake Superior.  相似文献   
40.
The molybdenum mineralization at the Tigriny tin deposit is considered for the first time in the light of possible recovery of Mo as a by-product of selective mining. It is established that Mo has a positive correlation with Bi and does not show a correlation with Sn, W, or Zn. The highest Mo grade (>0.1%) in the ore stockwork is related to hornfels near the exposed granite porphyry stock and decreases downward by an order of magnitude. At the level of adit 5, the most numerous quartz-molybdenite veinlets develop at a distance of 50–100 m from the granite porphyry stock. The molybdenite-quartz, pegmatoid, and autogreisen generations of molybdenum mineralization are related to different substages of the first ore stage. All these generations predated crystallization of wolframite, cassiterite, and other ore minerals. The formation temperature for each molybdenite generation was determined by homogenization of fluid inclusions in quartz and decrepitation of samples characterizing each molybdenite-bearing assemblage. These data allowed us not only to estimate the crystallization temperature of each molybdenite generation but also to establish that the molybdenite crystallized from a pneumatolytic-hydrothermal melt-solution at the early stage of the deposit formation. The molybdenum mineralization is genetically related to the granite porphyry stock. The structure of the quartz-molybdenum stockwork was studied to determine the clusters of quartz-molybdenite veinlets and establish their orientation. Molybdenite 1 occurs in variably oriented veinlets that make up a stockwork around the apical portion of the porphyry stock. Disseminations and pockets of molybdenites 2 and 3 are hosted in pegmatoid rocks, greisen, and greisenized granite porphyry. The density of the Tigriny stockwork varies from 0 to 40–50 quartz-molybdenite veinlets per 5 m. Their orientation and spatial distribution were studied in quantitative terms. The most promising targets for selective mining of molybdenite from the Tigriny deposit are the framework of the Minor porphyry stock and the apical portion of the Main stock. The Tigriny deposit demonstrates a clear relationship between ore formation and granitic magmatism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号