首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   139篇
  免费   5篇
  国内免费   2篇
大气科学   3篇
地球物理   40篇
地质学   31篇
海洋学   17篇
天文学   10篇
综合类   1篇
自然地理   44篇
  2021年   1篇
  2020年   2篇
  2018年   3篇
  2017年   2篇
  2016年   2篇
  2015年   2篇
  2014年   2篇
  2013年   4篇
  2012年   1篇
  2011年   3篇
  2010年   7篇
  2009年   2篇
  2008年   15篇
  2007年   4篇
  2006年   11篇
  2005年   5篇
  2004年   5篇
  2003年   6篇
  2002年   8篇
  2001年   4篇
  2000年   5篇
  1999年   5篇
  1998年   4篇
  1997年   1篇
  1996年   1篇
  1993年   3篇
  1992年   4篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1984年   1篇
  1983年   2篇
  1981年   1篇
  1980年   3篇
  1979年   2篇
  1978年   3篇
  1975年   1篇
  1974年   2篇
  1973年   5篇
  1972年   1篇
  1970年   1篇
  1969年   1篇
  1968年   2篇
  1966年   1篇
  1965年   1篇
  1964年   1篇
  1912年   1篇
  1908年   1篇
排序方式: 共有146条查询结果,搜索用时 0 毫秒
21.
22.
23.
24.
25.
In this study, we used data recorded by two consecutive passive broadband deployments on the Gulf of Aden northern margin, Dhofar region, Sultanate of Oman. The objective of these deployments is to map the young eastern Gulf of Aden passive continental margin crust and upper mantle structure and rheology. In this study, we use shear-wave splitting analysis to map lateral variations of upper mantle anisotropy beneath the study area. In this study, we found splitting magnitudes to vary between 0.33 and 1.0 s delay times, averaging about 0.6 s for a total of 17 stations from both deployment periods. Results show distinct abrupt lateral anisotropy variation along the study area. Three anisotropy zones are identified: a western zone dominated by NW–SE anisotropy orientations, an eastern zone dominated with NE–SW anisotropy orientations, and central zone with mixed anisotropy orientations similar to the east and west zones. We interpret these shorter wavelength anisotropy zones to possibly represent fossil lithospheric mantle anisotropy. We postulate that the central anisotropy zone may be representing a Proterozoic suture zone that separates two terranes to the east and west of it. The anisotropy zones west and east were being used indicative of different terranes with different upper mantle anisotropy signatures.  相似文献   
26.
Isotopic variations in melting snow are poorly understood. We made weekly measurements at the Central Sierra Snow Laboratory, California, of snow temperature, density, water equivalent and liquid water volume to examine how physical changes within the snowpack govern meltwater δ18O. Snowpack samples were extracted at 0.1 m intervals from ground level to the top of the snowpack profile between December 1991 and April 1992. Approximately 800 mm of precipitation fell during the study period with δ18O values between −21.35 and −4.25‰. Corresponding snowpack δ18O ranged from −22.25 to −6.25‰. The coefficient of variation of δ18O in snowpack levels decreased from −0.37 to −0.07 from winter to spring, indicating isotopic snowpack homogenization. Meltwater δ18O ranged from −15.30 to −8.05‰, with variations of up to 2.95‰ observed within a single snowmelt episode, highlighting the need for frequent sampling. Early snowmelt originated in the lower snowpack with higher δ18O through ground heat flux and rainfall. After the snowpack became isothermal, infiltrating snowmelt displaced the higher δ18O liquid in the lower snowpack through a piston flow process. Fractionation analysis using a two-component mixing model on the isothermal snowpack indicated that δ18O in the initial and final half of major snowmelt was 1.30‰ lower and 1.45‰ higher, respectively, than the value from simple mixing. Mean snowpack δ18O on individual profiling days showed a steady increase from −15.15 to −12.05‰ due to removal of lower δ18O snowmelt and addition of higher δ18O rainfall. Results suggest that direct sampling of snowmelt and snow cores should be undertaken to quantify tracer input compositions adequately. The snowmelt sequence also suggests that regimes of early lower δ18O and later higher δ18O melt may be modeled and used in catchment tracing studies.  相似文献   
27.
We present a new approach that incorporates two models to estimate the underwater light field from remote sensing of ocean color. The first employs a series of analytical, semi-analytical, and empirical algorithms to retrieve the spectrum of inherent optical properties (IOPs), including the absorption and the backscatter coefficients, from the spectrum of remote sensing reflectance. The second model computes the profile of photosynthetically available radiation E 0,PAR (z) for a vertically homogeneous water column using the information of the retrieved IOPs and the ambient optical environment. This computation is based on an improved look-up table technology that possesses high accuracy, comparable with the full solution of the radiative transfer equation, and meets the computational requirement of remote sensing application. This new approach was validated by in situ measurements and an extensive model-to-model comparison with a wide range of IOPs. We successfully mapped the compensation depth by applying this new approach to process the SeaWiFS imagery. This research suggests that E 0,PAR (z) can be obtained routinely from ocean-color data and may have significant implications for the estimation of global heat and carbon budget.  相似文献   
28.
Large fluctuation in transport of the Equatorial Countercurrent flowing eastward from the western boundary is not the direct result of fluctuation in transport of the North Equatorial Current, but rather relates to fluctuation of sea level anomaly in the Philippine Sea.  相似文献   
29.
Consolidated to friable carbonate rocks found in the Lee Stocking Island area in the Exuma Cays include: (1) reef rock, (2) channel stromatolites, (3) shallow-water hardgrounds, (4) beachrock rimming the islands and (5) Pleistocene bedrock.

The most common cement fabrics observed are: aragonitic fibers, which include acicular fan-druse and square-tipped coarse fibers cementing beachrock and stromatolites; and an isopachous needle-fiber rim cementing hardgrounds and stromatolites.

Less common are high-Mg calcite bladed textures of the reef rock and stromatolites. Two types of blades are present: the more common stubby variety of either high-Mg or low-Mg calcite, and an elongated variety of high-Mg calcite which was found in only three beachrock samples.

Aragonitic micrite envelopes usually surround grains in beachrock, hardgrounds and stromatolites, but only in association with fibrous cement. An aragonitic crust cements the surfaces of lime mud beds of the tidal channel, while a high-Mg calcite cryptocrystalline cement occurs in all the rock types. Calcified algal filaments of high-Mg calcite, from the abundant green and blue-green algae in the area, are a primary cement in stromatolites and a secondary cement in hardgrounds and beachrock. A low-Mg calcite equant spar cements the Pleistocene samples and is associated with meteoric diagenesis and cementation of the Pleistocene surface.

Cement precipitation coincides with the path of the cool oceanic water from Exuma Sound as it warms and loses CO2 and moves up onto the bank near Lee Stocking with the incoming tide. Cryptocrystalline cement is the first and commonest cement forming to the seaward while platformward, fibrous cements become predominant. As suggested by their crystal size and location on the shelf margin, we think that the reef rock cryptocrystalline material are the fastest forming of the cements, where the incoming oceanic water is more saturated with respect to calcium carbonate and undergoes the most significant warming. The rate of the warming and degassing process is thought to increase in the tidal channel though the cementation rate is thought to fall slightly in response to a reduced availability of calcium carbonate. On the platform interior further warming and degassing are believed to cause cement precipitation and the development of hardgrounds, but these may form at a slower rate than that of the margin, though this rate is still quite high. Cementation gradients occur from the tidal channel to the intertidal zones of: (1) west Norman's Pond Cay, where cement fabric suggests a reduced calcium carbonate availability, and (2) west Lee Stocking Island, where a change in mineralogy suggests a change in water chemistry.

Thus, a sequence of cement fabrics and mineralogies can be traced. Micritic textures occur in a more seaward position; fine, fibrous aragonite fibers in a more lagoonal and levee position; and coarser aragonite fibers and Mg-calcite cements in the intertidal and supratidal position. This sequence is thought to track the evolution of the water mass.  相似文献   

30.
High-latitude seas are mostly covered by multi-year ice, which impacts processes of primary production and sedimentation of organic matter. Because of the warming effect of West Spitsbergen Current (WSC), the waters off West Spitsbergen have only winter ice cover. That is uncommon for such a high latitude and enables to separate effects of multiyear-ice cover from the latitudinal patterns. Macrofauna was sampled off Kongsfjord (79°N) along the depth gradient from 300 to 3000 m. The density, biomass and diversity at shallow sites situated in a canyon were very variable. Biomass was negatively correlated with depth (R=-0.86, p<0.001), and ranged from 61 g ww m−2 (212 m) to 1 g ww m−2 (2025 m). The biomasses were much higher than in the multiyear-ice covered High Arctic at similar depths, while resembling those from temperate and tropical localities. Species richness (expressed by number of species per sample and species–area accumulation curves) decreased with depth. There was no clear depth-related pattern in diversity measures: Hurbert rarefaction, Shannon–Wiener or Pielou. The classic increase of species richness and diversity with depth was not observed. Species richness and diversity of deep-sea macrofauna were much lower in our study than in comparable studies of temperate North Atlantic localities. That is related to geographic isolation of Greenland–Icelandic–Norwegian (GIN) seas from the Atlantic pool of species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号