首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   737篇
  免费   32篇
  国内免费   17篇
测绘学   9篇
大气科学   63篇
地球物理   219篇
地质学   233篇
海洋学   88篇
天文学   83篇
综合类   4篇
自然地理   87篇
  2022年   6篇
  2021年   11篇
  2020年   13篇
  2019年   10篇
  2018年   19篇
  2017年   16篇
  2016年   24篇
  2015年   23篇
  2014年   17篇
  2013年   53篇
  2012年   34篇
  2011年   24篇
  2010年   28篇
  2009年   31篇
  2008年   42篇
  2007年   29篇
  2006年   26篇
  2005年   27篇
  2004年   29篇
  2003年   23篇
  2002年   24篇
  2001年   13篇
  2000年   10篇
  1999年   8篇
  1998年   13篇
  1997年   12篇
  1996年   14篇
  1995年   22篇
  1994年   15篇
  1993年   11篇
  1992年   5篇
  1991年   10篇
  1990年   6篇
  1989年   5篇
  1988年   5篇
  1987年   8篇
  1986年   11篇
  1984年   10篇
  1983年   9篇
  1982年   8篇
  1981年   13篇
  1980年   6篇
  1979年   7篇
  1978年   8篇
  1977年   8篇
  1976年   5篇
  1975年   5篇
  1974年   5篇
  1973年   6篇
  1972年   4篇
排序方式: 共有786条查询结果,搜索用时 31 毫秒
31.
We describe results from a 57-member ensemble of transient climate change simulations, featuring simultaneous perturbations to 54 parameters in the atmosphere, ocean, sulphur cycle and terrestrial ecosystem components of an earth system model (ESM). These emissions-driven simulations are compared against the CMIP3 multi-model ensemble of physical climate system models, used extensively to inform previous assessments of regional climate change, and also against emissions-driven simulations from ESMs contributed to the CMIP5 archive. Members of our earth system perturbed parameter ensemble (ESPPE) are competitive with CMIP3 and CMIP5 models in their simulations of historical climate. In particular, they perform reasonably well in comparison with HadGEM2-ES, a more sophisticated and expensive earth system model contributed to CMIP5. The ESPPE therefore provides a computationally cost-effective tool to explore interactions between earth system processes. In response to a non-intervention emissions scenario, the ESPPE simulates distributions of future regional temperature change characterised by wide ranges, and warm shifts, compared to those of CMIP3 models. These differences partly reflect the uncertain influence of global carbon cycle feedbacks in the ESPPE. In addition, the regional effects of interactions between different earth system feedbacks, particularly involving physical and ecosystem processes, shift and widen the ESPPE spread in normalised patterns of surface temperature and precipitation change in many regions. Significant differences from CMIP3 also arise from the use of parametric perturbations (rather than a multimodel ensemble) to represent model uncertainties, and this is also the case when ESPPE results are compared against parallel emissions-driven simulations from CMIP5 ESMs. When driven by an aggressive mitigation scenario, the ESPPE and HadGEM2-ES reveal significant but uncertain impacts in limiting temperature increases during the second half of the twenty-first century. Emissions-driven simulations create scope for development of errors in properties that were previously prescribed in coupled ocean–atmosphere models, such as historical CO2 concentrations and vegetation distributions. In this context, historical intra-ensemble variations in the airborne fraction of CO2 emissions, and in summer soil moisture in northern hemisphere continental regions, are shown to be potentially useful constraints, subject to uncertainties in the relevant observations. Our results suggest that future climate-related risks can be assessed more comprehensively by updating projection methodologies to support formal combination of emissions-driven perturbed parameter and multi-model earth system model simulations with suitable observational constraints. This would provide scenarios underpinned by a more complete representation of the chain of uncertainties from anthropogenic emissions to future climate outcomes.  相似文献   
32.
Twentieth‐century summer (July–August) temperatures in northern Finland are reconstructed using ring widths, maximum density and stable carbon isotope ratios (δ13C) of Scots pine tree rings, and using combinations of these proxies. Verification is based on the coefficient of determination (r2), reduction of error (RE) and coefficient of efficiency (CE) statistics. Of the individual proxies, δ13C performs best, followed by maximum density. Combining δ13C and maximum density strengthens the climate signal but adding ring widths leads to little improvement. Blue intensity, an inexpensive alternative to X‐ray densitometry, is shown to perform similarly. Multi‐proxy reconstruction of summer temperatures from a single site produces strong correlations with gridded climate data over most of northern Fennoscandia. Since relatively few trees are required (<15) the approach could be applied to long sub‐fossil chronologies where replication may be episodically low. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
33.
The interplay of eustatic and isostatic factors causes complex relative sea‐level (RSL) histories, particularly in paraglacial settings. In this context the past record of RSL is important in understanding ice‐sheet history, earth rheology and resulting glacio‐isostatic adjustment. Field data to develop sea‐level reconstructions are often limited to shallow depths and uncertainty exists as to the veracity of modelled sea‐level curves. We use seismic stratigraphy, 39 vibrocores and 26 radiocarbon dates to investigate the deglacial history of Belfast Lough, Northern Ireland, and reconstruct past RSL. A typical sequence of till, glacimarine and Holocene sediments is preserved. Two sea‐level lowstands (both max. ?40 m) are recorded at c. 13.5 and 11.5k cal a bp . Each is followed by a rapid transgression and subsequent periods of RSL stability. The first transgression coincides temporally with a late stage of Meltwater Pulse 1a and the RSL stability occurred between c. 13.0 and c. 12.2k cal a bp (Younger Dryas). The second still/slowstand occurred between c. 10.3 and c. 11.5k cal a bp . Our data provide constraints on the direction and timing of RSL change during deglaciation. Application of the Depth of Closure concept adds an error term to sea‐level reconstructions based on seismic stratigraphic reconstructions.  相似文献   
34.
Since the advent of Global Navigation Satellite Systems, it has been possible to perform hydrographic survey reductions through the ellipsoid, which has the potential to simplify operations and improve bathymetric products. This technique requires a spatially continuous separation surface connecting chart datum (CD) to a geodetic ellipsoid. The Canadian Hydrographic Service (CHS), with support from the Canadian Geodetic Survey, has developed a new suite of such surfaces, termed Hydrographic Vertical Separations Surfaces, or HyVSEPs, for CD and seven tidal levels. They capture the spatial variability of the tidal datum and levels between tide gauges and offshore using semiempirical models coupling observations at tide stations with relative sea-level rise estimates, dynamic ocean model solutions, satellite altimetry, and a geoid model. HyVSEPs are available for all tidal waters of Canada, covering over seven million square kilometers of ocean and more than 200,000 kilometers of shoreline. This document provides an overview of the CHS's modeling approach, tools, methods, and procedures.

The HyVSEP for CD defines the new hydrographic datum for the tidal waters of Canada. HyVSEPs for other tidal levels are fundamental for coastal studies, climate change adaptation and the definition of the Canadian shoreline and offshore boundaries. HyVSEPs for inland waters are not discussed.  相似文献   

35.
36.
37.
Evaluations of tidal wetland restoration efforts suffer from a lack of appropriate reference sites and standardized methods among projects. To help address these issues, the National Estuarine Research Reserve System (NERRS) and the NOAA Restoration Center engaged in a partnership to monitor ecological responses and evaluate 17 tidal wetland restoration projects associated with five reserves. The goals of this study were to (1) determine the level of restoration achieved at each project using the restoration performance index (RPI), which compares change in parameters over time between reference and restoration sites, (2) compare hydrologic and excavation restoration projects using the RPI, (3) identify key indicator parameters for assessing restoration effectiveness, and (4) evaluate the value of the NERRS as reference sites for local restoration projects. We found that the RPI, modified for this study, was an effective tool for evaluating relative differences in restoration performance; most projects achieved an intermediate level of restoration from 2008 to 2010, and two sites became very similar to their paired reference sites, indicating that the restoration efforts were highly effective. There were no differences in RPI scores between hydrologic and excavation restoration project types. Two abiotic parameters (marsh platform elevation and groundwater level) were significantly correlated with vegetation community structure and thus can potentially influence restoration performance. Our results highlight the value of the NERRS as reference sites for assessing tidal wetland restoration projects and provide improved guidance for scientists and restoration practitioners by highlighting the RPI as a trajectory analysis tool and identifying key monitoring parameters.  相似文献   
38.
Extrusive and intrusive igneous rocks represent different parts of a magmatic system and ultimately provide complementary information about the processes operating beneath volcanoes. To shed light on such processes, we have examined and quantified the textures and mineral compositions of plutonic and cumulate xenoliths and lavas from Bequia, Lesser Antilles arc. Both suites contain assemblages of iddingsitized olivine, plagioclase, clinopyroxene and spinel with rare orthopyroxene and ilmenite. Mineral zoning is widespread, but more protracted in lavas than xenoliths. Plagioclase cores and olivine have high anorthite (An?≤?98) and low forsterite (Fo?≤?84) compositions respectively, implying crystallisation from a hydrous mafic melt that was already fractionated. Xenolith textures range from adcumulate to orthocumulate with variable mineral crystallisation sequences. Textural criteria are used to organize the xenoliths into six groups. Amphibole, notably absent from lavas, is a common feature of xenoliths, together with minor biotite and apatite. Bulk compositions of xenoliths deviate from the liquid line of descent of lavas supporting a cumulate origin with varying degrees of reactive infiltration by evolved hydrous melts, preserved as melt inclusions in xenolith crystals. Volatile saturation pressures in melt inclusions indicate cumulate crystallization over a 162–571 MPa pressure range under conditions of high dissolved water contents (up to 7.8 wt% H2O), consistent with a variety of other thermobarometric estimates. Phase assemblages of xenoliths are consistent with published experimental data on volatile-saturated low-magnesium and high-alumina basalts and basaltic andesite from the Lesser Antilles at pressures of 200–1000 MPa, temperatures of 950–1050 °C and dissolved H2O contents of 4–7 wt%. Once extracted from mid-crustal mushes, residual melts ascend to higher levels and undergo H2O-saturated crystallization in shallow, pre-eruptive reservoirs to form phenocrysts and glomerocrysts. The absence of amphibole from lavas reflects instability at low pressures, whereas its abundance in xenoliths testifies to its importance in mid-crustal differentiation processes. A complex, vertically extensive (6 to at least 21 km depth) magmatic system is inferred beneath Bequia. Xenoliths represent fragments of the mush incorporated into ascending magmas. The widespread occurrence of evolved melts in the mush, but the absence of erupted evolved magmas, in contrast to islands in the northern Lesser Antilles, may reflect the relative immaturity of the Bequia magmatic system.  相似文献   
39.
New biostratigraphical, geochemical, and magnetic evidence is synthesized with IODP Expedition 352 shipboard results to understand the sedimentary and tectono-magmatic development of the Izu–Bonin outer forearc region. The oceanic basement of the Izu–Bonin forearc was created by supra-subduction zone seafloor spreading during early Eocene (c. 50–51 Ma). Seafloor spreading created an irregular seafloor topography on which talus locally accumulated. Oxide-rich sediments accumulated above the igneous basement by mixing of hydrothermal and pelagic sediment. Basaltic volcanism was followed by a hiatus of up to 15 million years as a result of topographic isolation or sediment bypassing. Variably tuffaceous deep-sea sediments were deposited during Oligocene to early Miocene and from mid-Miocene to Pleistocene. The sediments ponded into extensional fault-controlled basins, whereas condensed sediments accumulated on a local basement high. Oligocene nannofossil ooze accumulated together with felsic tuff that was mainly derived from the nearby Izu–Bonin arc. Accumulation of radiolarian-bearing mud, silty clay, and hydrogenous metal oxides beneath the carbonate compensation depth (CCD) characterized the early Miocene, followed by middle Miocene–Pleistocene increased carbonate preservation, deepened CCD and tephra input from both the oceanic Izu–Bonin arc and the continental margin Honshu arc. The Izu–Bonin forearc basement formed in a near-equatorial setting, with late Mesozoic arc remnants to the west. Subduction-initiation magmatism is likely to have taken place near a pre-existing continent–oceanic crust boundary. The Izu–Bonin arc migrated northward and clockwise to collide with Honshu by early Miocene, strongly influencing regional sedimentation.  相似文献   
40.
Saline alkaline lakes that precipitate sodium carbonate evaporites are most common in volcanic terrains in semi‐arid environments. Processes that lead to trona precipitation are poorly understood compared to those in sulphate‐dominated and chloride‐dominated lake brines. Nasikie Engida (Little Magadi) in the southern Kenya Rift shows the initial stages of soda evaporite formation. This small shallow (<2 m deep; 7 km long) lake is recharged by alkaline hot springs and seasonal runoff but unlike neighbouring Lake Magadi is perennial. This study aims to understand modern sedimentary and geochemical processes in Nasikie Engida and to assess the importance of geothermal fluids in evaporite formation. Perennial hot‐spring inflow waters along the northern shoreline evaporate and become saturated with respect to nahcolite and trona, which precipitate in the southern part of the lake, up to 6 km from the hot springs. Nahcolite (NaHCO3) forms bladed crystals that nucleate on the lake floor. Trona (Na2CO3·NaHCO3·2H2O) precipitates from more concentrated brines as rafts and as bottom‐nucleated shrubs of acicular crystals that coalesce laterally to form bedded trona. Many processes modify the fluid composition as it evolves. Silica is removed as gels and by early diagenetic reactions and diatoms. Sulphate is depleted by bacterial reduction. Potassium and chloride, of moderate concentration, remain conservative in the brine. Clastic sedimentation is relatively minor because of the predominant hydrothermal inflow. Nahcolite precipitates when and where pCO2 is high, notably near sublacustrine spring discharge. Results from Nasikie Engida show that hot spring discharge has maintained the lake for at least 2 kyr, and that the evaporite formation is strongly influenced by local discharge of carbon dioxide. Brine evolution and evaporite deposition at Nasikie Engida help to explain conditions under which ancient sodium carbonate evaporites formed, including those in other East African rift basins, the Eocene Green River Formation (western USA), and elsewhere.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号