首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71368篇
  免费   1401篇
  国内免费   649篇
测绘学   1722篇
大气科学   5042篇
地球物理   14291篇
地质学   25367篇
海洋学   6221篇
天文学   16386篇
综合类   208篇
自然地理   4181篇
  2022年   396篇
  2021年   699篇
  2020年   781篇
  2019年   829篇
  2018年   1902篇
  2017年   1764篇
  2016年   2242篇
  2015年   1327篇
  2014年   2184篇
  2013年   3808篇
  2012年   2292篇
  2011年   3134篇
  2010年   2619篇
  2009年   3526篇
  2008年   3274篇
  2007年   3062篇
  2006年   2894篇
  2005年   2360篇
  2004年   2262篇
  2003年   2117篇
  2002年   1935篇
  2001年   1811篇
  2000年   1724篇
  1999年   1390篇
  1998年   1473篇
  1997年   1393篇
  1996年   1100篇
  1995年   1144篇
  1994年   970篇
  1993年   879篇
  1992年   854篇
  1991年   763篇
  1990年   860篇
  1989年   722篇
  1988年   652篇
  1987年   821篇
  1986年   667篇
  1985年   860篇
  1984年   927篇
  1983年   870篇
  1982年   838篇
  1981年   718篇
  1980年   673篇
  1979年   614篇
  1978年   606篇
  1977年   556篇
  1976年   542篇
  1975年   508篇
  1974年   513篇
  1973年   471篇
排序方式: 共有10000条查询结果,搜索用时 984 毫秒
431.
A model is presented for the generation and evolution of bump-in-tail driven Langmuir waves in the solar wind during type III emission, which removes a number of apparent inconsistencies between theory and observations. It is argued that there must be localized enhancements of f b /v by a factor of 102 over the measured average values. Growth rates and energy densities of Langmuir waves are, therefore, considerably enhanced, permitting growth to overcome linear scattering losses, and also allowing nonlinear decay into ion-acoustic waves, in line with observations. Estimates are made of the probability distribution p(E), of wave field strengths E, based on linear and nonlinear wave-packet evolution, yielding p(E) E –a, 3. This helps explain why very high values of E are rarely found in the measured spiky wave turbulence.  相似文献   
432.
During the type IV burst on 24 April, 1985 we observed at 234 MHz an untypical, strong, nearly six hours lasting continuum emission incorporating several groups of broadband pulsations, zebra patterns, fiber bursts, and a new fine structure phenomenon. The power spectra of the groups of broadband pulsations reveal no simple structure. There is only one common periodic component between 0.3 s and 0.4 s. Slowly drifting chains of narrowband fiber bursts are described as a new fine structure by spectrograms and simultaneously recorded single frequency intensity profiles. A qualitative model of this new fine structure is suggested.  相似文献   
433.
We present the two-dimensional imaging observations of radio bursts in the frequency range 25–50 MHz made with the Clark Lake multifrequency radioheliograph during a coronal mass ejection event (CME) observed on 1984, June 27 by the SMM Coronagraph/Polarimeter and Mauna Loa K-coronameter. The event was spatially and temporally associated with precursors in the form of meter-decameter type III bursts, soft X-ray emission and a H flare spray. The observed type IV emission in association with the CME (and the H spray) could be interpreted as gyrosynchrotron emission from a plasmoid containing a magnetic field of 2.5 G and nonthermal electrons with a number density of 105 cm–3 and energy 350 keV.On leave from Indian Institute of Astrophysics, Kodaikanal, India.  相似文献   
434.
The period-growth dichotomy of the solar cycle predicts that cycle 21, the present solar cycle, will be of long duration (>133 mo), ending after July 1987. Bimodality of the solar cycle (i.e., cycles being distributed into two groups according to cycle length, based on a comparison to the mean cycle period) is clearly seen in a scatter diagram of descent versus ascent durations. Based on the well-observed cycles 8–20, a linear fit for long-period cycles (being a relatively strong inverse relationship that is significant at the 5% level and having a coefficient of determination r 2 0.66) suggests that cycle 21, having an ascent of 42 mo, will have a descent near 99 mo; thus, cycle duration of about 141 mo is expected. Like cycle 11, cycle 21 occurs on the downward envelope of the sunspot number curve, yet is associated with an upward first difference in amplitude. A comparison of individual cycle, smoothed sunspot number curves for cycles 21 and 11 reveals striking similarity, which suggests that if, indeed, cycle 21 is a long-period cycle, then it too may have an extended tail of sustained, low, smoothed sunspot number, with cycle 22 minimum occurring either in late 1987 or early 1988.  相似文献   
435.
It has been proposed that the observed solar neutrino flux exhibits important correlations with solar particles, galactic cosmic rays, and the sunspot cycle, with the latter correlation being opposite in phase and lagging behind the sunspot cycle by about one year. Re-examination of the data-available interval 1971–1981, employing various tests of statistical significance, however, suggests that such a claim is, at present, unwarrantable. For example, on the associations of solar neutrino flux and cosmic-ray flux with the Ap geomagnetic index, neither were found to be statistically significant (at the 95% level of confidence), regardless of the choice of lag (-1, 0, or +1 yr). Presuming linear fits, all correlations with Ap had coefficients of determination (r 2, where r is the linear correlation coefficient) less than 16%, meaning that 16% of the variation in the selected test parameters could be explained by the variation in Ap. Similarly, on the associations of solar neutrino flux and cosmic ray flux with sunspot number, only the latter association proved to be of statistical importance. Using the best linear fits, the correlation between yearly averages of solar neutrino flux and sunspot number had r 2 19%, the correlation between weighted moving averages (of order 5) of solar neutrino flux and sunspot number had r 2 45%, and the correlation between cosmic-ray flux and sunspot number had r 2 76%, all correlations being inverse associations. Solar neutrino flux was found not to correlate strongly with cosmic-ray flux, and the Ap geomagnetic index was found not to correlate strongly with sunspot number.  相似文献   
436.
The behaviour of the flare in the period of enhancement and maximum of hard X-ray, microwave and decimetric type IV continuum is analysed. The elongation of the H ribbons and microwave source disclose that the energy release site was shifting through a system of loops with a velocity less than 200 km s-1, and that the energy was carried down the field lines with a velocity of about 1000 km s-1, implying the thermal conduction front mechanism of energy transport. Several processes of energy release are considered and it is concluded that an explanation in terms of succeeding interactions of neighbouring loops, involving fast reconnection of their poloidal components is in best agreement with the observations.Proceedings of the Second CESRA Workshop on Particle Acceleration and Trapping in Solar Flares, held at Aubigny-sur-Nère (France), 23–26 June, 1986.  相似文献   
437.
Rapid variations of the radial velocities of absorption components of Ti II lines in CH Cyg are presented. The periods of these variations are determined to 1.89 and 41.07 days in 1982. The variations are interpreted through oscilliations in the mass transfer from the M component onto the accretion disk of the companion during periastron passage.Paper presented at the IAU Colloquium No. 93 on Cataclysmic Variables. Recent Multi-Frequency Observations and Theoretical Developments, held at Dr. Remeis-Sternwarte Bamberg, F.R.G., 16–19 June, 1986.  相似文献   
438.
A general velocity-height relation for both antimatter and ordinary matter meteor is derived. This relation can be expressed as % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq% aHfpqDdaWgaaWcbaGaamOEaaqabaaakeaacqaHfpqDdaWgaaWcbaGa% eyOhIukabeaaaaGccqGH9aqpcaqGLbGaaeiEaiaabchacaqGGaWaam% WaaeaacqGHsisldaWcaaqaaiaadkeaaeaacaWGHbaaaiaabwgacaqG% 4bGaaeiCaiaabIcacaqGTaGaamyyaiaadQhacaGGPaaacaGLBbGaay% zxaaGaeyOeI0YaaSaaaeaacaWGdbaabaGaamOqaiabew8a1naaBaaa% leaacqGHEisPaeqaaaaakmaacmaabaGaaGymaiabgkHiTiaabwgaca% qG4bGaaeiCamaadmaabaGaeyOeI0YaaSaaaeaacaWGcbaabaGaamyy% aaaacaqGLbGaaeiEaiaabchacaqGOaGaaeylaiaadggacaWG6bGaai% ykaaGaay5waiaaw2faaaGaay5Eaiaaw2haaiaacYcaaaa!64FD!\[\frac{{\upsilon _z }}{{\upsilon _\infty }} = {\text{exp }}\left[ { - \frac{B}{a}{\text{exp( - }}az)} \right] - \frac{C}{{B\upsilon _\infty }}\left\{ {1 - {\text{exp}}\left[ { - \frac{B}{a}{\text{exp( - }}az)} \right]} \right\},\]where z is the velocity of the meteoroid at height z, its velocity before entrance into the Earth's atmosphere, is the scale-height, and C parameter proportional to the atom-antiatom annihilation cross- section, which is experimentally unknown. The parameter B (B = DA0/m) is the well known parameter for koinomatter (ordinary matter) meteors, D is the drag factor, 0 is the air density at sea level, A is the cross sectional area of the meteoroid and m its mass.When the annihilation cross-section is zero — in the case of ordinary meteors — the parameter C is also zero and the above derived equation becomes % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq% aHfpqDdaWgaaWcbaGaamOEaaqabaaakeaacqaHfpqDdaWgaaWcbaGa% eyOhIukabeaaaaGccqGH9aqpcaqGLbGaaeiEaiaabchacaqGGaWaam% WaaeaacqGHsisldaWcaaqaaiaadkeaaeaacaWGHbaaaiaabwgacaqG% 4bGaaeiCaiaabIcacaqGTaGaamyyaiaadQhacaGGPaaacaGLBbGaay% zxaaGaaiilaaaa!4CF5!\[\frac{{\upsilon _z }}{{\upsilon _\infty }} = {\text{exp }}\left[ { - \frac{B}{a}{\text{exp( - }}az)} \right],\]which is the well known velocity-height relation for koinomatter meteors.In the case in which the Universe contains antimatter in compact solid structure, the velocity-height relation can be found useful.Work performed mainly at the Nuclear Physics Laboratory of the National University of Athens, Greece.  相似文献   
439.
The main limit to the time span of a numerical integration of the planetary orbits is no longer set by the availability of computer resources, but rather by the accumulation of the integration error. By the latter we mean the difference between the computed orbit and the dynamical behaviour of the real physical system, whatever the causes. The analysis of these causes requires an interdisciplinary effort: there are physical model and parameters errors, algorithm and discretisation errors, rounding off errors and reliability problems in the computer hardware and system software, as well as instabilities in the dynamical system. We list all the sources of integration error we are aware of and discuss their relevance in determining the present limit to the time span of a meaningful integration of the orbit of the planets. At present this limit is of the order of 108 years for the outer planets. We discuss in more detail the truncation error of multistep algorithms (when applied to eccentric orbits), the coefficient error, the method of Encke and the associated coordinate change error, the procedures used to test the numerical integration software and their limitations. Many problems remain open, including the one of a realistic statistical model of the rounding off error; at present, the latter can only be described by a semiempirical model based upon the simpleN 2 formula (N=number of steps, =machine accuracy), with an unknown numerical coefficient which is determined only a posteriori.  相似文献   
440.
Multiple windbreaks: An aeolean ensemble   总被引:1,自引:0,他引:1  
Near-neutral measurements of the turbulent wind field within and above a sequence of 15 parallel windbreaks on a flat pastoral site are presented. The windbreak fences each had a porosity of 60% and were equally-spaced at 6 times their height (h = 2 m). The following conclusions seem justified for wind directions within 10 ° of the normal to the array:
  1. Above the windbreaks (2h), mean windspeeds first decreased and then increased asymptotically to a value in equilibrium with the new surface roughness. At 0.5h, windspeeds exhibited a slow increase down the entire array.
  2. Reflecting differences in approach flows, the drag on the initial fence was almost twice that on barriers farther downstream. This reduction in momentum extraction per windbreak was associated with an elevation in the zero-plane displacement to a level equal to 0.8h.
  3. At positions well-removed from the initial fences, mean windspeeds were reduced throughout the entire region below shelter height. In this region, the flow became increasingly dominated by downward moving air with velocities much greater than the local average. The zone of reduced turbulence was small, extending only 2h downstream of a barrier at a height of 0.25h. This corresponded with the region excluded from smoke trails released at the top of windbreaks.
  4. An approximate TKE budget mid-way between windbreaks 7 and 8 suggests that shear and wake production peak near z = h and that production is balanced by dissipation and vertical transport components. Advective and inertial interaction terms are negligible at this midway position but are likely to be major sources of TKE closer to the windbreak. Local equilibrium is attained above z = 1.5h implying the existence of a constant-stress layer.
The measurements show the practical difficulty of simultaneously reducing both mean windspeeds and turbulence levels with repeated windbreaks at conventional spacings for horticultural applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号