首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   70974篇
  免费   1237篇
  国内免费   547篇
测绘学   1737篇
大气科学   5643篇
地球物理   14816篇
地质学   23037篇
海洋学   6185篇
天文学   15943篇
综合类   145篇
自然地理   5252篇
  2020年   524篇
  2019年   543篇
  2018年   1014篇
  2017年   1011篇
  2016年   1462篇
  2015年   1097篇
  2014年   1509篇
  2013年   3491篇
  2012年   1627篇
  2011年   2473篇
  2010年   2121篇
  2009年   3088篇
  2008年   2832篇
  2007年   2556篇
  2006年   2641篇
  2005年   2275篇
  2004年   2390篇
  2003年   2205篇
  2002年   2103篇
  2001年   1865篇
  2000年   1836篇
  1999年   1587篇
  1998年   1565篇
  1997年   1546篇
  1996年   1336篇
  1995年   1283篇
  1994年   1152篇
  1993年   1059篇
  1992年   1018篇
  1991年   856篇
  1990年   1082篇
  1989年   920篇
  1988年   810篇
  1987年   1013篇
  1986年   881篇
  1985年   1098篇
  1984年   1286篇
  1983年   1211篇
  1982年   1097篇
  1981年   1056篇
  1980年   904篇
  1979年   904篇
  1978年   927篇
  1977年   862篇
  1976年   810篇
  1975年   751篇
  1974年   754篇
  1973年   763篇
  1972年   473篇
  1971年   409篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
961.
The physical significance of a negative correlation between a varve record from Mud Lake, British Columbia, and temperature is discussed in the context of a process-network. The process-network is defined as the system of temporally and spatially connected processes involved in the transfer of a signal from climate to varved glaciolacustrine sediment. The six systems defining the network include climate, glacier, fluvial, geomorphic, terrestrial biologic and lacustrine systems to which each process belongs. A literature review outlines significant variation in the strength and character of correlations between components of the process-network and highlights that more comprehensive interpretations of varves as a hydroclimatic proxy require an improved understanding of the process-network. Documenting each process in the network is integral to informing a more complete model of this system, identifying processes that constitute signal transfer and assessing hydroclimatic proxies based on linear correlation. Such documentation is of growing importance as varved lacustrine sediments are increasingly used as a hydroclimatic proxy. The complex nature of the process-network requires greater emphasis on interdisciplinary cooperation and alternative methods to the linear statistical model.  相似文献   
962.
963.
964.
Gold and palladium have been determined in 42 geological reference samples with graphite furnace AAS after aqua regia digestion and SnCl2-Hg extraction. A brief discussion on the quality of these analyses also is presented.  相似文献   
965.
Eighty-nine juvenile Atlantic sturgeon,Acipenser oxyrhynchus oxyrhynchus, including 10 recaptures, were collected, tagged and released in the upper tidal Delaware River between July 1981 and December 1984. All were captured in the river channel between Roebling and Trenton, New Jersey, using bottom-set experimental gill nets during daylight hours. The species was present from July through December and collected in increased numbers in the past two years. The fork lengths ranged from 284 to 862 mm (mean±SD = 516 mm±106 mm) and the weights from 140 to 4,250 g (mean±SD = 1,369 g±815 g). Ten juvenile Atlantic sturgeon were recaptured between September 1983 and December 1984 and were at large from one to 418 d. Recapture data suggest that these sturgeon utilize this area annually from July through December, possibly as a nursery. Juvenile Atlantic sturgeon appear to utilize the upper tidal portion of the Delaware River for a much longer period of time and at lower temperatures than in other river systems.  相似文献   
966.
New major and trace element data on over 70 samples are combinedwith a wider knowledge of the regional stratigraphy, and ofthe tectonic evolution of the boundary between the ColumbiaPlateau and the northern margin of the Basin and Range province,to distinguish three subgroups within the Columbia River BasaltGroup (CRBG): the Picture Gorge Basalt; the main sequence ofColumbia River flood basalts, here named the Clarkston Basalt;and the Saddle Mountains Basalt. The subgroups are characterizedby different incompatible element and Sr-, Nd-, and Pb-isotoperatios, and they are interpreted in terms of different sourceregions mobilized under different tectonic conditions. The majordifferences between the subgroups are consistent with partialmelting processes in the upper mantle, and it is argued thatthey reflect previous partial melting episodes which resultedin source regions that were variably enriched and depleted inincompatible elements. The major variations within the PictureGorge and Clarkston Basalt subgroups include increases in theabundances of large ion lithophile elements (LILE) and increasesin the ratios of LILE/high field strength elements (HFSE) whichare interpreted as the addition of a lithospheric/subduction-relatedcomponent. The Picture Gorge Basalt has a depleted isotopic and chemicalsignature on which is superimposed an enrichment of LILE toproduce a trace element pattern similar to that of other 17–0-Mabasalts erupted south of the Olympic Wallowa Lineament. Thispattern is characteristic of volcanism associated with the Basinand Range extensional province, and others have attributed itto a source component derived from an enriched subcontinentallithospheric mantle (SCLM). Of the Clarkston Basalts, the Imnaha and Grande Ronde Basaltsform chemical and isotopic arrays which indicate mixing of componentsfrom two distinct source regions. One had high ratios of LILE/HFSEand light rare earth elements (LREE)/HFSE, and as these arenot common in oceanic basalts, this component is thought tohave been derived from the continental mantle lithosphere. Itsisotope ratios are more enriched (older?) than those of thePicture Gorge Basalt, and its Rb/Sr ratios are much higher thanthose in its source rocks, consistent with preferential mobilizationof LILE at the time of magmatism. The second component was derivedfrom an asthenospheric source similar to that of Hawaii basaltsand is most obviously attributed to mantle plume activity. Basaltsof the Eckler Mountain and Wanapum Formations (smaller, separateformations of the Clarkston Basalt as redefined in this paper)fit this mixing model less well and may represent mixing betweenmore than two components. Flows of the third CRBG subgroup,the Saddle Mountains Basalt, also carry a lithospheric geochemicalsignature and have long been recognized as having more radiogenicisotopic signatures than the other two subgroups. Thus, SaddleMountains flows appear to require a lithospheric source enrichedin LILE at an even earlier time, and we concur with other workersthat the isotopic and chemical evidence implies their derivationfrom subcontinental lithospheric mantle enriched at {small tilde}2000Ma. Within each subgroup, the chemical effects of partial melting,fractional crystallization, and magma mixing processes can allbe distinguished within particular flow sequences. In the ImnahaBasalt variable degrees of partial melting during the generationof the CRBG magmas, and gabbro fractionation within the lowercrust, played major roles in their evolution. In the GrandeRonde Basalt fractional crystallization appears to be restrictedto >10%. The chemical and isotopic data for each CRBG subgroup, and thedifferent sources which those data imply, can be accommodatedin a tectonic model which includes the passing of the Yellowstonehotspot south of the center of the CRBG eruption before significantBasin and Range extension had moved north of the Brothers Faultzone at 15 Ma.  相似文献   
967.
Oceanic crust west of North America at the beginning of the Jurassic belonged to the Kula plate. The development of the western margin of North America since the Jurassic reflects interaction with the Kula plate, the Kula-Farallon spreading center and the Farallon plate. The Kula plate ceased to exist in the Paleocene and later developments were caused by interaction of the Farallon plate and, subsequently, collision with the East Pacific Rise.At the beginning of the Jurassic, when spreading between North and South America began, the Kula-Farallon-Pacific triple junction moved to the north relative to North America, and the eastern end of the Kula-Farallon spreading center swept northwards along the continental margin.During the Paleocene, Kula-Pacific spreading ceased and the Kula plate fused to the Pacific plate. Throughout the Mesozoic, subduction of the Kula plate took place along the Alaskan continental margin. When the Kula plate joined the Pacific plate a new subduction zone formed along the line of the present Aleutian chain.Wrangellia and Stikinia, anomalous terrains in Alaska and northwestern Canada respectively, were emplaced by transport on the Kula plate from lower latitudes. Hypotheses which require transport of these plates in the Mesozoic from the “far reaches of the Pacific” ignore the problem of transport across either the Kula-Pacific or Kula-Farallon spreading centers. The interaction of the Kula plate and western North America throughout the Jurassic and the Cretaceous should result in emplacement of these terrains by motion oblique to the continental margin. Tethyan faunas in Stikinia must come from the western end of Tethys between North and South America, not the Indonesian region at the eastern end of Tethys.As the northeastern end of the Kula-Farallon ridge moved northward, the sense of motion changed from right lateral shear between the Kula and North American plates to collision or left lateral shear between the Farallon and North American plates. Left lateral shear along zones analogous to the Mojave-Sonora megashear may have been the means by which anomalous terrains were transported to the southeast into the gap between North and South America forming present day Central America. Such a model overcomes the overlap difficulties suffered in previous attempts to reconstruct the Mesozoic paleogeography of Central America.  相似文献   
968.
Summary of biogeochemical prospecting for mercury mineralization in the Pinchi Fault is given. One thousand two hundred and eight plant samples were collected and analyzed for mercury. In mineralized areas the typical mercury content of dried plants was not less than 0.2 and 0.4 μg/g and even concentrations between 0.6 and 1.6 μg/g were observed. In nonmineralized zones at least 90% of the plants contained no more than 0.15 μg/g of mercury. Analytical and sampling procedures are described.  相似文献   
969.
970.
The standard enthalpies of formation of FeS (troilite), FeS2 (pyrite), Co0.9342S, Co3S4 (linnaeite), Co9S8 (cobalt pentlandite), CoS2 (cattierite), CuS (covellite), and Cu2S (chalcocite) have been determined by high temperature direct reaction calorimetry at temperatures between 700 K and 1021 K. The following results are reported: $$\Delta {\rm H}_{f,FeS}^{tr} = - 102.59 \pm 0.20kJ mol^{ - 1} ,$$ $$\Delta {\rm H}_{f,FeS}^{py} = - 171.64 \pm 0.93kJ mol^{ - 1} ,$$ $$\Delta {\rm H}_{f,Co_{0.934} S} = - 99.42 \pm 1.52kJ mol^{ - 1} ,$$ $$\Delta {\rm H}_{f,Co_9 S_8 }^{ptl} = - 885.66 \pm 16.83kJ mol^{ - 1} ,$$ $$\Delta {\rm H}_{f,Co_3 S_4 }^{In} = - 347.47 \pm 7.27kJ mol^{ - 1} ,$$ $$\Delta {\rm H}_{f,CoS_2 }^{ct} = - 150.94 \pm 4.85kJ mol^{ - 1} ,$$ $$\Delta {\rm H}_{f,Cu_2 S}^{cc} = - 80.21 \pm 1.51kJ mol^{ - 1} ,$$ and $$\Delta {\rm H}_{f,CuS}^{cv} = - 53.14 \pm 2.28kJ mol^{ - 1} ,$$ The enthalpy of formation of CuFeS2 (chalcopyrite) from (CuS+FeS) and from (Cu+FeS2) was determined by solution calorimetry in a liquid Ni0.60S0.40 melt at 1100 K. The results of these measurements were combined with the standard enthalpies of formation of CuS, FeS, and FeS2, to calculate the standard enthalpy of formation of CuFeS2. We found \(\Delta {\rm H}_{f,CuFeS_2 }^{ccp} = - 194.93 \pm 4.84kJ mol^{ - 1}\) . Our results are compared with earlier data given in the literature; generally the agreement is good and our values agree with previous estimates within the uncertainties present in both.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号