首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6563篇
  免费   176篇
  国内免费   67篇
测绘学   140篇
大气科学   544篇
地球物理   1515篇
地质学   2194篇
海洋学   656篇
天文学   1033篇
综合类   21篇
自然地理   703篇
  2021年   57篇
  2020年   72篇
  2019年   84篇
  2018年   122篇
  2017年   124篇
  2016年   153篇
  2015年   115篇
  2014年   142篇
  2013年   350篇
  2012年   197篇
  2011年   293篇
  2010年   266篇
  2009年   269篇
  2008年   258篇
  2007年   238篇
  2006年   254篇
  2005年   199篇
  2004年   198篇
  2003年   185篇
  2002年   174篇
  2001年   130篇
  2000年   115篇
  1999年   114篇
  1998年   109篇
  1997年   89篇
  1996年   92篇
  1995年   100篇
  1994年   89篇
  1993年   84篇
  1992年   94篇
  1991年   73篇
  1990年   102篇
  1989年   89篇
  1988年   85篇
  1987年   110篇
  1986年   80篇
  1985年   107篇
  1984年   143篇
  1983年   121篇
  1982年   105篇
  1981年   110篇
  1980年   94篇
  1979年   102篇
  1978年   81篇
  1977年   91篇
  1976年   77篇
  1975年   82篇
  1974年   61篇
  1973年   69篇
  1972年   37篇
排序方式: 共有6806条查询结果,搜索用时 15 毫秒
321.
The concentration and distribution of uranium (U) in sediment samples from three boreholes recovered near radioactive waste storage tanks at Hanford, Washington, USA, were determined in detail using bulk and micro-analytical techniques. The source of contamination was a plume that contained an estimated 7000 kg of dissolved U that seeped into the subsurface as a result of an accident that occurred during filling of tank BX-102. The desorption character and kinetics of U were also determined by experiment in order to assess the mobility of U in the vadose zone. Most samples contained too little moisture to obtain quantitative information on pore water compositions. Concentrations of U (and contaminant phosphate—P) in pore waters were therefore estimated by performing 1:1 sediment-to-water extractions and the data indicated concentrations of these elements were above that of uncontaminated “background” sediments. Further extraction of U by 8 N nitric acid indicated that a significant fraction of the total U is relatively immobile and may be sequestered in mobilization-resistant phases. Fine- and coarse-grained samples in sharp contact with one another were sub-sampled for further scrutiny and identification of U reservoirs. Segregation of the samples into their constituent size fractions coupled with microwave-assisted digestion of bulk samples showed that most of the U contamination was sequestered within the fine-grained fraction. Isotope exchange (233U) tests revealed that ∼51% to 63% of the U is labile, indicating that the remaining fund of U is locked up in mobilization-resistant phases. Analysis by Micro-X-ray Fluorescence and Micro-X-ray Absorption Near-Edge Spectroscopy (μ-XRF and μ-XANES) showed that U is primarily associated with Ca and is predominately U(VI). The spectra obtained on U-enriched “hot spots” using Time-Resolved Laser-Induced Fluorescence Spectroscopy (TRLIFS) provide strong evidence for uranophane-type [Ca(UO2)2(SiO3OH)2(H2O)5] and uranyl phosphate [Ca(UO2)2(PO4)2(H2O)10-12] phases. These data show that disseminated micro-precipitates can form in narrow pore spaces within the finer-grained matrix and that these objects are likely not restricted to lithic fragment environments. Uranium mobility may therefore be curtailed by precipitation of uranyl silicate and phosphate phases, with additional possible influence exerted by capillary barriers. Consequently, equilibrium-based desorption models that predict the concentrations and mobility of U in the subsurface matrix at Hanford are unnecessarily conservative.  相似文献   
322.
323.
We have performed a detailed Mössbauer study of synthetic annites on the (OH, F)-join. Recently developed data treatment and spectral analysis methods were used to extract true intrinsic Fe2+ quadrupole splitting distributions (QSDs) that represent the most information that can be resolved from the spectra. The overall room temperature (RT) QSDs can be consistently interpreted in terms of four QSD contributions (or populations) centered at: QSHH2.55 mm/s for Fe2+O4(OH)2 octahedra (cis and trans not resolved), QSHF 2.35 mm/s for Fe2+O4(OH)F octahedra (cis and trans not resolved), QScFF2.15 mm/s for cis-Fe2+O4F2 octahedra, and QStFF 1.5 mm/s for trans-Fe2+O4F2 octahedra. Each such contribution has a width ( 0.2 mm/s) caused by distortions of the octahedra. Minor contributions due to Fe2+O5(OH) and Fe2+O5F octahedra probably also contribute to the overall Fe2+ QSDs. The ferric iron spectral components were also characterized. Here, two distinct types of octahedral Fe3+ contributions are seen and interpreted as being due mainly to Fe3+O5OH and Fe3+O5F octahedra, respectively. Tetrahedral Fe3+ is seen only in the OH-annite end-member and the total Fe3+ content drops significantly on addition of F. On leave from: Department of Materials Physics, University of Science and Technology Beijing, 100083 Beijing, China  相似文献   
324.
To evaluate the stability of phlogopite in the presence of carbonate in the Earth’s mantle, we conducted a series of experiments in the KMAS–H2O–CO2 system. A mixture consisting of synthetic phlogopite (phl) and natural magnesite (mag) was prepared (phl90-mag10; wt%) and run at pressures from 4 to 8 GPa at temperatures ranging from 1,150 to 1,550°C. We bracketed the solidus between 1,200 and 1,250°C at pressures of 4, 5 and 6 GPa and between 1,150 and 1,200°C at a pressure of 7 GPa. Below the solidus, phlogopite coexists with magnesite, pyrope and a fluid. At the solidus, magnesite is the first phase to react out, and enstatite and olivine appear. Phlogopite melts over a temperature range of ~150°C. The amount of garnet increases above solidus from ~10 to ~30 modal% to higher pressures and temperatures. A dramatic change in the composition of quench phlogopite is observed with increasing pressure from similar to primary phlogopite at 4 GPa to hypersilicic at pressures ≥5 GPa. Relative to CO2-free systems, the solidus is lowered such, that, if carbonation reactions and phlogopite metasomatism take place above a subducting slab in a very hot (Cascadia-type) subduction environment, phlogopite will melt at a pressure of ~7.5 GPa. In a cold (40 mWm−2) subcontinental lithospheric mantle, phlogopite is stable to a depth of 200 km in the presence of carbonate and can coexist with a fluid that becomes Si-rich with increasing pressure. Ascending kimberlitic melts that are produced at greater depths could react with peridotite at the base of the subcontinental lithospheric mantle, crystallizing phlogopite and carbonate at a depth of 180–200 km.  相似文献   
325.
326.
Occurrence of small (3 ML < 4) earthquakes on two 10-km segments of the Calaveras fault between Calaveras and Anderson reservoirs follows a simple linear pattern of elastic strain accumulation and release. The centers of these independent patches of earthquake activity are 20 km apart. Each region is characterized by a constant rate of seismic slip as computed from earthquake magnitudes, and is assumed to be an isolated locked patch on a creeping fault surface. By calculating seismic slip rates and the amount of seismic slip since the time of the last significant (M 3) earthquake, it is possible to estimate the most likely date of the next (M - 3) event on each patch. The larger the last significant event, the longer the time until the next one. The recurrence time also appears to be increased according to the moment of smaller (2 < ML < 3) events in the interim. The anticipated times of future larger events on each patch, on the basis of preliminary location data through May 1977 and estimates of interim activity, are tabulated below with standard errors. The occurrence time for the southern zone is based on eight recurrent events since 1969, the northern zone on only three. The 95% confidence limits can be estimated as twice the standard error of the projected least-squares line. Events of M 3 should not occur in the specified zones at times outside these limits. The central region between the two zones was the locus of two events (M = 3.6, 3.3) on July 3, 1977. These events occurred prior to a window based on the three point, post-1969 slip-time line for the central region.
LatitudeLongitudeDepthMag.Target dateStandard error (days)
37°17′± 2′N121°39′±2′W5.0 ±2 km3.0–4.07-22-7722.3
37°26′± 2′N121°47′±2′W6.0 ± 2 km3.0–4.09-02-778.0
  相似文献   
327.
328.
Infrared microthermometry of opaque minerals has revealed that temperatures of phase changes vary with the infrared light source intensity, resulting in an overestimate of fluid salinities and an underestimate of homogenization temperatures. Failing to recognize this analytical artifact during infrared microthermometry may result in meaningless geological models. A fluid inclusion investigation on enargite from a high-sulfidation epithermal deposit is used as an example to document this. Fluid salinities obtained during an early investigation ranged between 6.3 and 20.4 wt.% NaCl, which were interpreted as intense boiling or as evidence for the involvement of a magmatic brine during ore formation. Fluid inclusion salinities obtained with improved analytical settings, i.e. low light intensities, fall between 1.1 and 1.7 wt.% NaCl and are in better agreement with fluid salinities obtained in quartz from similar deposits, and recent modeling suggesting vapor transport of Au and Cu from deep porphyry-Cu environments to shallower high-sulfidation epithermal deposits.  相似文献   
329.
The relationship between the oxygen isotope ratio of mammal tooth enamel and that of drinking water was used to reconstruct changes in the Miocene oxygen isotope ratio of rainfall (meteoric water δ18OMW). These, in turn, are related to climatic parameters (temperature, precipitation and evaporation rate). δ18O values of rhinocerotid teeth from the Aquitaine Basin (southwestern France) suggest a significant climatic change between 17 and 12 Ma, characterized by cooling together with precipitation increase, in agreement with other terrestrial and oceanic records. To cite this article: I. Bentaleb et al., C. R. Geoscience 338 (2006).  相似文献   
330.
Robert Kerrich  Ali Polat   《Tectonophysics》2006,415(1-4):141-165
Mantle convection and plate tectonics are one system, because oceanic plates are cold upper thermal boundary layers of the convection cells. As a corollary, Phanerozoic-style of plate tectonics or more likely a different version of it (i.e. a larger number of slowly moving plates, or similar number of faster plates) is expected to have operated in the hotter, vigorously convecting early Earth. Despite the recent advances in understanding the origin of Archean greenstone–granitoid terranes, the question regarding the operation of plate tectonics in the early Earth remains still controversial. Numerical model outputs for the Archean Earth range from predominantly shallow to flat subduction between 4.0 and 2.5 Ga and well-established steep subduction since 2.5 Ga [Abbott, D., Drury, R., Smith, W.H.F., 1994. Flat to steep transition in subduction style. Geology 22, 937–940], to no plate tectonics but rather foundering of 1000 km sectors of basaltic crust, then “resurfaced” by upper asthenospheric mantle basaltic melts that generate the observed duality of basalts and tonalities [van Thienen, P., van den Berg, A.P., Vlaar, N.J., 2004a. Production and recycling of oceanic crust in the early earth. Tectonophysics 386, 41–65; van Thienen, P., Van den Berg, A.P., Vlaar, N.J., 2004b. On the formation of continental silicic melts in thermochemical mantle convection models: implications for early Earth. Tectonophysics 394, 111–124]. These model outputs can be tested against the geological record. Greenstone belt volcanics are composites of komatiite–basalt plateau sequences erupted from deep mantle plumes and bimodal basalt–dacite sequences having the geochemical signatures of convergent margins; i.e. horizontally imbricated plateau and island arc crust. Greenstone belts from 3.8 to 2.5 Ga include volcanic types reported from Cenozoic convergent margins including: boninites; arc picrites; and the association of adakites–Mg andesites- and Nb-enriched basalts.Archean cratons were intruded by voluminous norites from the Neoarchean through Proterozoic; norites are accounted for by melting of subduction metasomatized Archean continental lithospheric mantle (CLM). Deep CLM defines Archean cratons; it extends to  350 km, includes the diamond facies, and xenoliths signify a composition of the buoyant, refractory, residue of plume melting, a natural consequence of imbricated plateau-arc crust. Voluminous tonalites of Archean greenstone–granitoid terranes show a secular trend of increasing Mg#, Cr, Ni consistent with slab melts hybridizing with thicker mantle wedge as subduction angle steepens. Strike-slip faults of 1000 km scale; diachronous accretion of distinct tectonostratigraphic terranes; and broad Cordilleran-type orogens featuring multiple sutures, and oceanward migration of arcs, in the Archean Superior and Yilgarn cratons, are in common with the Altaid and Phanerozoic Cordilleran orogens. There is increasing geological evidence of the supercontinent cycle operating back to  2.7 Ga: Kenorland or Ur  2.7–2.4 Ga; Columbia  1.6–1.4 Ga; Rodinia  1100–750 Ma; and Pangea  230 Ma. High-resolution seismic reflection profiling of Archean terranes reveals a prevalence of low angle structures, and evidence for paleo-subduction zones. Collectively, the geological–geochemical–seismic records endorse the operation of plate tectonics since the early Archean.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号