首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7004篇
  免费   180篇
  国内免费   66篇
测绘学   162篇
大气科学   583篇
地球物理   1583篇
地质学   2332篇
海洋学   713篇
天文学   1138篇
综合类   15篇
自然地理   724篇
  2021年   55篇
  2020年   76篇
  2019年   89篇
  2018年   139篇
  2017年   133篇
  2016年   160篇
  2015年   117篇
  2014年   161篇
  2013年   359篇
  2012年   226篇
  2011年   315篇
  2010年   287篇
  2009年   309篇
  2008年   305篇
  2007年   237篇
  2006年   272篇
  2005年   227篇
  2004年   228篇
  2003年   216篇
  2002年   196篇
  2001年   137篇
  2000年   132篇
  1999年   126篇
  1998年   124篇
  1997年   105篇
  1996年   104篇
  1995年   105篇
  1994年   96篇
  1993年   93篇
  1992年   99篇
  1991年   83篇
  1990年   102篇
  1989年   90篇
  1988年   81篇
  1987年   113篇
  1986年   79篇
  1985年   103篇
  1984年   138篇
  1983年   115篇
  1982年   105篇
  1981年   107篇
  1980年   96篇
  1979年   106篇
  1978年   73篇
  1977年   88篇
  1976年   74篇
  1975年   71篇
  1974年   61篇
  1973年   62篇
  1972年   37篇
排序方式: 共有7250条查询结果,搜索用时 0 毫秒
81.
Coastal plains are amongst the most densely populated areas in the world. Many coastal peatlands are drained to create arable land. This is not without consequences; physical compaction of peat and its degradation by oxidation lead to subsidence, and oxidation also leads to emissions of carbon dioxide (CO2). This study complements existing studies by quantifying total land subsidence and associated CO2 respiration over the past millennium in the Dutch coastal peatlands, to gain insight into the consequences of cultivating coastal peatlands over longer timescales. Results show that the peat volume loss was 19.8 km3, which lowered the Dutch coastal plain by 1.9 m on average, bringing most of it below sea level. At least 66 % of the volume reduction is the result of drainage, and 34 % was caused by the excavation and subsequent combustion of peat. The associated CO2 respiration is equivalent to a global atmospheric CO2 concentration increase of ~0.39 ppmv. Cultivation of coastal peatlands can turn a carbon sink into a carbon source. If the path taken by the Dutch would be followed worldwide, there will be double trouble: globally significant carbon emissions and increased flood risk in a globally important human habitat. The effects would be larger than the historic ones because most of the cumulative Dutch subsidence and peat loss was accomplished with much less efficient techniques than those available now.  相似文献   
82.
83.
The introduction of a non-native freshwater fish, blue catfish Ictalurus furcatus, in tributaries of Chesapeake Bay resulted in the establishment of fisheries and in the expansion of the population into brackish habitats. Blue catfish are an invasive species in the Chesapeake Bay region, and efforts are underway to limit their impacts on native communities. Key characteristics of the population (population size, survival rates) are unknown, but such knowledge is useful in understanding the impact of blue catfish in estuarine systems. We estimated population size and survival rates of blue catfish in tidal habitats of the James River subestuary. We tagged 34,252 blue catfish during July–August 2012 and 2013; information from live recaptures (n = 1177) and dead recoveries (n = 279) were used to estimate annual survival rates and population size using Barker’s Model in a Robust Design and allowing for heterogeneity in detection probabilities. The blue catfish population in the 12-km study area was estimated to be 1.6 million fish in 2013 (95% confidence interval [CI] adjusted for overdispersion: 926,307–2,914,208 fish). Annual apparent survival rate estimates were low: 0.16 (95% CI 0.10–0.24) in 2012–2013 and 0.44 (95% CI 0.31–0.58) in 2013–2014 and represent losses from the population through mortality, permanent emigration, or both. The tagged fish included individuals that were large enough to exhibit piscivory and represented size classes that are likely to colonize estuarine habitats. The large population size that we estimated was unexpected for a freshwater fish in tidal habitats and highlights the need to effectively manage such species.  相似文献   
84.
The coastal ocean model FVCOM is applied to quantify the changes in circulation, flushing, and exposure time in Great South Bay, New York, after Superstorm Sandy breached the barrier island in 2012. Since then, the lagoon system is connected to the Atlantic via five instead of four inlets. The model simulations are run on two high-resolution unstructured grids, one for the pre-breach configuration, one including the new inlet, with tidal-only forcing, and summer and winter forcing conditions. Despite its small cross-sectional size, the breach has a relatively large net inflow that leads to a strengthening of the along-bay through-flow in Great South Bay (GSB); the tidally driven volume transport in central GSB quadrupled. The seasonal forcing scenarios show that the southwesterly sea breeze in summer slows down the tidally driven flow, while the forcing conditions in winter are highly variable, and the circulation is dependent on wind direction and offshore sea level. Changes in flushing and exposure time associated with the modified transport patterns are evaluated using a Eulerian passive tracer technique. Results show that the new inlet produced a significant decrease in flushing time (approximately 35% reduction under summer wind conditions and 20% reduction under winter wind conditions). Maps of exposure time reflect the local changes in circulation and flushing.  相似文献   
85.
Mining exploitation has a negative impact on the natural environment. Voids created in the rockmass result in displacements and deformations of land surface. During planning and conducting the exploitation, the range of exploitation influence in the form of linear deformations is being determined. On the basis of mining-geological parameters of exploitation, the exploitation range of influences is calculated. According to the literature, many different ranges of exploitation influences can be determined depending on what has been the purpose of it. Different types of exploitation influence ranges can be distinguished, such as theoretical, damage or measurable. In the paper, the matters connected with determining those three types of the influence range are taken under consideration. The comparison of magnitudes of determined influence ranges is illustrated with two practical examples.  相似文献   
86.
Upper Permian to Lower Triassic coastal plain successions of the Sydney Basin in eastern Australia have been investigated in outcrop and continuous drillcores. The purpose of the investigation is to provide an assessment of palaeoenvironmental change at high southern palaeolatitudes in a continental margin context for the late Permian (Lopingian), across the end‐Permian Extinction interval, and into the Early Triassic. These basins were affected by explosive volcanic eruptions during the late Permian and, to a much lesser extent, during the Early Triassic, allowing high‐resolution age determination on the numerous tuff horizons. Palaeobotanical and radiogenic isotope data indicate that the end‐Permian Extinction occurs at the top of the uppermost coal bed, and the Permo‐Triassic boundary either within an immediately overlying mudrock succession or within a succeeding channel sandstone body, depending on locality due to lateral variation. Late Permian depositional environments were initially (during the Wuchiapingian) shallow marine and deltaic, but coastal plain fluvial environments with extensive coal‐forming mires became progressively established during the early late Permian, reflected in numerous preserved coal seams. The fluvial style of coastal plain channel deposits varies geographically. However, apart from the loss of peat‐forming mires, no significant long‐term change in depositional style (grain size, sediment‐body architecture, or sediment dispersal direction) was noted across the end‐Permian Extinction (pinpointed by turnover of the palaeoflora). There is no evidence for immediate aridification across the boundary despite a loss of coal from these successions. Rather, the end‐Permian Extinction marks the base of a long‐term, progressive trend towards better‐drained alluvial conditions into the Early Triassic. Indeed, the floral turnover was immediately followed by a flooding event in basinal depocentres, following which fluvial systems similar to those active prior to the end‐Permian Extinction were re‐established. The age of the floral extinction is constrained to 252.54 ± 0.08 to 252.10 ± 0.06 Ma by a suite of new Chemical Abrasion Isotope Dilution Thermal Ionization Mass Spectrometry U‐Pb ages on zircon grains. Another new age indicates that the return to fluvial sedimentation similar to that before the end‐Permian Extinction occurred in the basal Triassic (prior to 251.51 ± 0.14 Ma). The character of the surface separating coal‐bearing pre‐end‐Permian Extinction from coal‐barren post‐end‐Permian Extinction strata varies across the basins. In basin‐central locations, the contact varies from disconformable, where a fluvial channel body has cut down to the level of the top coal, to conformable where the top coal is overlain by mudrocks and interbedded sandstone–siltstone facies. In basin‐marginal locations, however, the contact is a pronounced erosional disconformity with coarse‐grained alluvial facies overlying older Permian rocks. There is no evidence that the contact is everywhere a disconformity or unconformity.  相似文献   
87.
Icefish populations continue to decline. Historical as well as current over-exploitations of stocks aggravated by climate change are frequently seen as res  相似文献   
88.
89.
This article introduces a new quantitative method of dating petroglyphs and describes its initial application. First, the major recent developments in the field of rock art dating are briefly reviewed, and the continuing difficulties in the dating of petroglyphs are elucidated. The archaeological background of the Lake Onega art, its geological setting and archaeogeophysical dating are explained. The theory of microerosion dating is described, together with its first practical application at the site Besov Nos on the shore of Lake Onega. The article concludes with a brief discussion of the new method's advantages and disadvantages. © 1993 John Wiley & Sons, Inc.  相似文献   
90.
The European Research Project AquaDEB (2007–2011, http://www.ifremer.fr/aquadeb/) is joining skills and expertise of some French and Dutch research institutes and universities to analyse the physiological flexibility of aquatic organisms and to link it to ecological and evolutionary processes within a common theoretical framework for quantitative bioenergetics [Kooijman, S.A.L.M., 2000. Dynamic energy and mass budgets in biological systems. Cambridge University Press, Cambridge]. The main scientific objectives in AquaDEB are i) to study and compare the sensitivity of aquatic species (mainly molluscs and fish) to environmental variability of natural or human origin, and ii) to evaluate the related consequences at different biological levels (individual, population, ecosystem) and temporal scales (life cycle, population dynamics, evolution). At mid-term life, the AquaDEB collaboration has already yielded interesting results by quantifying bio-energetic processes of various aquatic species (e.g. molluscs, fish, crustaceans, algae) with a single mathematical framework. It has also allowed to federate scientists with different backgrounds, e.g. mathematics, microbiology, ecology, chemistry, and working in different fields, e.g. aquaculture, fisheries, ecology, agronomy, ecotoxicology, climate change. For the two coming years, the focus of the AquaDEB collaboration will be in priority: (i) to compare energetic and physiological strategies among species through the DEB parameter values and to identify the factors responsible for any differences in bioenergetics and physiology; and to compare dynamic (DEB) versus static (SEB) energy models to study the physiological performance of aquatic species; (ii) to consider different scenarios of environmental disruption (excess of nutrients, diffuse or massive pollution, exploitation by man, climate change) to forecast effects on growth, reproduction and survival of key species; (iii) to scale up the models for a few species from the individual level up to the level of evolutionary processes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号