首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   514篇
  免费   14篇
  国内免费   6篇
测绘学   12篇
大气科学   70篇
地球物理   93篇
地质学   159篇
海洋学   39篇
天文学   74篇
自然地理   87篇
  2024年   2篇
  2021年   9篇
  2020年   9篇
  2019年   9篇
  2018年   10篇
  2017年   13篇
  2016年   10篇
  2015年   11篇
  2014年   12篇
  2013年   24篇
  2012年   20篇
  2011年   29篇
  2010年   28篇
  2009年   34篇
  2008年   25篇
  2007年   23篇
  2006年   25篇
  2005年   21篇
  2004年   19篇
  2003年   21篇
  2002年   18篇
  2001年   12篇
  2000年   12篇
  1999年   14篇
  1998年   15篇
  1997年   5篇
  1996年   7篇
  1995年   9篇
  1994年   9篇
  1993年   6篇
  1992年   4篇
  1991年   11篇
  1990年   3篇
  1989年   6篇
  1988年   3篇
  1987年   12篇
  1986年   3篇
  1985年   5篇
  1984年   1篇
  1983年   1篇
  1982年   6篇
  1981年   3篇
  1980年   3篇
  1979年   3篇
  1978年   1篇
  1977年   3篇
  1976年   1篇
  1970年   1篇
  1965年   1篇
  1964年   1篇
排序方式: 共有534条查询结果,搜索用时 15 毫秒
121.
122.
Because of their economic importance as hydrocarbon reservoirs, the Upper Devonian dolomitized carbonate reefs in southwest Alberta have been the subject of several studies. Still, there is no consensus on the process of matrix dolomitization and furthermore, the process of vug development is not often addressed. The studied outcrops show features of an early diagenetic matrix-selective dolomitization by a Late Devonian seawater-derived fluid. Seepage reflux dolomitization combined with latent reflux is proposed, which best explains most chemical characteristics. The cements in the vugs are precipitated from warm saline, 87Sr-enriched fluids and testify to thermogenic sulphate reduction based on the presence of sulphur, CO2 and H2S in inclusions, relatively high homogenization temperatures and depleted δ13C values, which sets constraints on the timing of vug formation. Secondary porosity may be created by the mixing of formation water with a tectonically and topographically driven fluid and by the dissolution of anhydrite nodules.  相似文献   
123.
In order to understand natural sea‐level variability, and to enhance future predictions, accurate and precise estimates of Holocene tidal levels are required. Although the application of diatom‐based transfer functions can yield such data, these work best when underpinned by local training sets. Urbanized estuaries offer little prospect of obtaining local training sets and, instead, the reliability of regional transfer functions has to be assessed. The performance of a published regional (UK) diatom‐based tidal‐level transfer function applied to fossil assemblages from two contrasting core sites in the Mersey Estuary, UK, is assessed using modern analogue techniques and sediment isotope data. We find that, although estimated tidal levels coincide with changes in organic matter source, the frequent lack of modern analogues mean that palaeotide estimates are without basis. This is likely a consequence of the site‐specific nature of diatom assemblages in higher intertidal and supratidal areas in particular, where local factors are expected to exert a greater control on their ecology. This situation may be partly resolved by constructing and applying much larger regional training sets from multiple higher intertidal and supratidal sites (where intact). Otherwise the application of alternative techniques, such as regional foraminiferal tidal‐level transfer functions, may be more appropriate. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
124.
Paleomagnetic data from lavas and dikes of the Unkar igneous suite (16 sites) and sedimentary rocks of the Nankoweap Formation (7 sites), Grand Canyon Supergroup (GCSG), Arizona, provide two primary paleomagnetic poles for Laurentia for the latest Middle Proterozoic (ca. 1090 Ma) at 32°N, 185°E (dp=6.8°, DM=9.3°) and early Late Proterozoic (ca. 850–900 Ma) at 10°S, 163°E (dp=3.5°, DM=7.0°). A new 40Ar/39Ar age determination from an Unkar dike gives an interpreted intrusion age of about 1090 Ma, similar to previously reported geochronologic data for the Cardenas Basalts and associated intrusions. The paleomagnetic data show no evidence of any younger, middle Late Proterozoic tectonothermal event such as has been revealed in previous geochronologic studies of the Unkar igneous suite. The pole position for the Unkar Group Cardenas Basalts and related intrusions is in good agreement with other ca. 1100 Ma paleomagnetic poles from the Keweenawan midcontinent rift deposits and other SW Laurentia diabase intrusions. The close agreement in age and position of the Unkar intrusion (UI) pole with poles derived from rift related rocks from elsewhere in Laurentia indicates that mafic magmatism was essentially synchronous and widespread throughout Laurentia at ca. 1100 Ma, suggesting a large-scale continental magmatic event. The pole position for the Nankoweap Formation, which plots south of the Unkar mafic rocks, is consistent with a younger age of deposition, at about 900 to 850 Ma, than had previously been proposed. Consequently, the inferred 200 Ma difference in age between the Cardenas Basalts and overlying Nankoweap Formation provides evidence for a third major unconformity within the Grand Canyon sequence.  相似文献   
125.
Preservation of organic matter in estuarine and coastal areas is an important process in the global carbon cycle. This paper presents bulk δ13C and C/N of organic matter from source to sink in the Pearl River catchment, delta and estuary, and discusses the applicability of δ13C and C/N as indicators for sources of organic matter in deltaic and estuarine sediments. In addition to the 91 surface sediment samples, other materials collected in this study cover the main sources of organic material to estuarine sediment. These are: terrestrial organic matter (TOM), including plants and soil samples from the catchment; estuarine and marine suspended particulate organic carbon (POC) from both summer and winter. Results show that the average δ13C of estuarine surface sediment increases from −25.0 ± 1.3‰ in the freshwater environment to −21.0 ± 0.2‰ in the marine environment, with C/N decreasing from 15.2 ± 3.3 to 6.8 ± 0.2. In the source areas, C3 plants have lower δ13C than C4 plants (−29.0 ± 1.8‰ and −13.1 ± 0.5‰ respectively). δ13C increases from −28.3 ± 0.8‰ in the forest soil to around −24.1‰ in both riverbank soil and mangrove soil due to increasing proportion of C4 grasses. The δ13CPOC increases from −27.6 ± 0.8‰ in the freshwater areas to −22.4 ± 0.5‰ in the marine-brackish-water areas in winter, and ranges between −24.0‰ in freshwater areas and −25.4‰ in brackish-water areas in summer. Comparison of the δ13C and C/N between the sources and sink indicates a weakening TOM and freshwater POC input in the surface sedimentary organic matter seawards, and a strengthening contribution from the marine organic matter. Thus we suggest that bulk organic δ13C and C/N analysis can be used to indicate sources of sedimentary organic matter in estuarine environments. Organic carbon in surface sediments derived from anthropogenic sources such as human waste and organic pollutants from industrial and agricultural activities accounts for less than 10% of the total organic carbon (TOC). Although results also indicate elevated δ13C of sedimentary organic matter due to some agricultural products such as sugarcane, C3 plants are still the dominant vegetation type in this area, and the bulk organic δ13C and C/N is still an effective indicator for sources of organic matter in estuarine sediments.  相似文献   
126.
 Annual precipitation, July and January temperatures were reconstructed from a continuous Holocene pollen sequence from the Middle Atlas, Morocco, using the best modern analogues method. The reconstructions show a clear difference between the early and late Holocene: from ∼10 ka to ∼6.5 ka the climate was drier and warmer than during the period since 6.5 ka. The average value of annual precipitation was ∼870 mm until 6.5 ka, then rose to ∼940 mm. Between 10 ka and 6.5 ka January and July temperatures were about 4 °C higher than the present. Both temperatures show a marked decrease between 7 ka and 6 ka. After 6.5 ka July and January temperatures fluctuated between 21 and 23 °C, and 2.5 and 5 °C respectively. January temperatures show a period of intermediate values (∼3.5 °C) between 4 ka and 5.5 ka. The reconstructed climate values generally match palaeolimnological data from the same core, which show five intervals of low lake level during the Holocene. They are also consistent with regional-scale COHMAP simulated palaeoclimate that shows contrasting patterns of rainfall variation between the northwesternmost part of Africa and the intertropical band. Received: 7 July 1997 / Accepted: 28 May 1998  相似文献   
127.
Dual-Doppler lidar observations are used to investigate the structure and evolution of surface-layer flow over a suburban area. The observations were made during the Joint Urban 2003 (JU2003) field experiment in Oklahoma City, U.S.A. in the summer of 2003. This study focuses specifically on a 10-h sequence of scan data beginning shortly after noon local time on 7 July 2003. During this period two coherent Doppler lidars performed overlapping low elevation angle sector scans upwind and south of Oklahoma City’s central business district. Radial velocity data from the two lidars are processed to reveal the structure and evolution of the horizontal velocity field in the surface layer throughout the afternoon and during the evening transition period. The retrieved velocity fields clearly show a tendency for turbulence structures to be elongated in the direction of the mean flow throughout the entire 10-h study period. In order to quantify the observed anisotropy and its dependence on stability, integral length scales are estimated directly from the spatially resolved velocity retrievals. As the flow became more stably stratified the characteristic cross-stream dimension of the linear structures decreased. The streamwise component was consistently more anisotropic than the cross-stream component, and both velocity components exhibited maximum anisotropy under neutral conditions. The ratio of the streamwise to cross-stream length scale was estimated to be about eight for the streamwise component, and four for the cross-stream component under neutral conditions.  相似文献   
128.
The understanding of geotechnical characteristics of near-surface material is of fundamental interest in seismic microzonation. Shear wave velocity (Vs), one of the most important soil properties for soil response modeling, has been evaluated through seismic profiling using the multichannel analysis of surface waves in the city of Dehradun situated along the foothills of northwest Himalaya. Fifty sites in the city have been investigated with survey lines between 72 and 96 m in length. Multiple 1-D and interpolated 2-D profiles have been generated up to a depth of 30–40 m. The Vs were used in the SHAKE2000 software in combination with seismic input motion of the recent Chamoli earthquake to obtain site response and amplification spectra. The estimated Vs are higher in the northern part of the study area (i.e., 200–700 m/s from the surface to a depth of about 30 m) as compared to the south and southwestern parts of the city (i.e., 180–400 m/s for the same depth range). The response spectra suggest that spectral acceleration values for two-story structures are three to eight times higher than peak ground acceleration at bedrock. The analysis also suggests peak amplification at 3–4, 2–2.5, and 1–1.5 Hz in the northern, central, and south-southwestern parts of the city, respectively. The spatial distributions of Vs and spectral accelerations provide valuable information for the seismic microzonation in different parts of the urban area of Dehradun.  相似文献   
129.
A study of normal faults in the Nubian Sandstone Sequence, from the eastern Gulf of Suez rift, has been conducted to investigate the relationship between the microstructure and petrophysical properties of cataclasites developed along seismic-scale faults (slip-surface cataclasites) and smaller displacement faults (deformation bands) found in their damage zones. The results help to quantify the uncertainty associated with predicting the fluid flow behaviour of seismic-scale faults by analysing small faults recovered from core, a common procedure in the petroleum industry. The microstructure of the cataclasites was analysed as well as their single-phase permeability and threshold pressure. Faulting occurred at a maximum burial depth of ∼1.2 km. The permeability of deformation band and slip-surface cataclasites varies over ∼1.5 orders of magnitude for a given fault. Our results suggest that the lowest measured deformation band permeabilities provide a good estimate for the arithmetic-mean permeability of the major slip-surface cataclasites. This is because the cataclastic permeability reduction is mostly established early in the deformation history. Stress at the time of faulting rather than final strain appears to be the critical factor determining fault rock permeability. For viable predictions it is important that the slip-surface cataclasites and deformation bands originate from the same host. On the other hand, a higher uncertainty is associated with threshold pressure predictions, as the arithmetic-mean slip-surface cataclasite threshold pressure exceeds the highest measured deformation band threshold pressure by at least a factor of 4.  相似文献   
130.
Three components of magnetization have been observed in ninety-six samples (twelve sites) of amygdaloidal basalts and “sedimentary greenstones” of the Unicoi Formation in the Blue Ridge Province of northeast Tennessee and southwest Virginia. These components could be isolated by alternating field as well as thermal demagnetization. One component, with a direction close to that of the present-day geomagnetic field is ascribed to recent viscous remanent magnetizations; another component, with intermediate blocking temperatures and coercivities, gives a mean direction of D = 132°, I = +43°,α95 = 9° for N = 10 sites before correction for tilt of the strata. This direction and the corresponding pole position are close to Ordovician/Silurian data from the North American craton and we infer this magnetization to be due to a thermal(?) remagnetization during or after the Taconic orogeny. This magnetization is of post-folding origin, which indicates that the Blue Ridge in our area was structurally affected by the Taconic deformation. The third component, with the highest blocking temperatures and coercivities, appears to reside in hematite. Its mean direction, D = 276°, I = ?17°,α95 = 13.8° for N = 6 sites (after tilt correction) corresponds to a pole close to Latest Precambrian and Cambrian poles for North America. The fold test is inconclusive for this magnetization at the 95% confidence level because of the near-coincidence of the strike and the declinations. We infer this direction to be due to early high-temperature oxidation of the basalts, and argue that its magnetization may have survived the later thermal events because of its intrinsic high blocking temperatures. A detailed examination of the paleomagnetic directions from this study reveals that the Blue Ridge in this area may have undergone a small counterclockwise rotation of about 15°.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号