首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   402篇
  免费   14篇
  国内免费   6篇
测绘学   9篇
大气科学   46篇
地球物理   80篇
地质学   129篇
海洋学   32篇
天文学   51篇
自然地理   75篇
  2024年   2篇
  2022年   1篇
  2021年   9篇
  2020年   9篇
  2019年   3篇
  2018年   10篇
  2017年   13篇
  2016年   8篇
  2015年   10篇
  2014年   11篇
  2013年   19篇
  2012年   15篇
  2011年   20篇
  2010年   24篇
  2009年   30篇
  2008年   24篇
  2007年   20篇
  2006年   23篇
  2005年   17篇
  2004年   18篇
  2003年   19篇
  2002年   13篇
  2001年   12篇
  2000年   9篇
  1999年   9篇
  1998年   12篇
  1997年   4篇
  1996年   4篇
  1995年   3篇
  1994年   5篇
  1993年   4篇
  1992年   3篇
  1991年   8篇
  1990年   1篇
  1989年   5篇
  1988年   1篇
  1987年   6篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   6篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
排序方式: 共有422条查询结果,搜索用时 15 毫秒
81.
82.
Li  Ji-Jun  Fang  Xiao-Min  Van der Voo  Rob  Zhu  Jun-Jie  Mac Niocaill  Conall  Cao  Ji-Xiu  Zhong  Wei  Chen  Huai-Lu  Wang  Jianli  Wang  Jian-Ming  Zhang  Yie-Chun 《Geologie en Mijnbouw》1997,76(1-2):121-134
A paleomagnetic study of the 510-m-thick Wangjiashan section of Late Miocene and Pliocene terrestrial sediments reveals a fairly complete reversal record with ages from 11 to 1.8 Ma. The magnetostratigraphy of the Dongshanding section, located nearby, reveals a partially overlapping reversal record with ages from 2.2 to 0 Ma, and facilitates correlation of the Wangjiashan section with the global polarity time scale. A new stratigraphic division of the Wangjiashan section replaces the name Linxia formation by five new formation names, based on lithologic variation and mammalian fossil finds. The new formations and their magnetostratigraphically determined ages are: Dongshan Formation (c. 1.75–2.6 Ma), Jishi Fm. (c. 2.6–3.6 Ma), Hewangjia Fm. (4.5–6.0 Ma), Liushu Fm. (6.0–7.6 Ma), and Dongxiang Fm. (7.6–c. 12 Ma). The Neogene stratigraphy and fossil mammals suggest that the nearby part of the Tibetan Plateau experienced a persistent denudation during the Late Miocene and Early Pliocene, but that it was uplifted more rapidly at about 3.6 Ma.  相似文献   
83.
In an attempt to better constrain the timing of Variscan HP-HT metamorphism in the SE Bohemian Massif we have dated zoned zircons from a garnet-kyanite granulite of granitic composition from the Dunkelsteiner Wald Massif, Lower Austria, by means of sensitive high-resolution ion microprobe (SHRIMP) technique. In order to combine isotopic information with crystal growth textures, CL and BSE images were systematically taken from the dated zircons. A characteristic threefold concentric zoning was found in many zircons. This involves pre-Variscan protolithic cores followed by two distinct metamorphic/anatectic overgrowth shells of Variscan age. The inner overgrowth shell is characterized by a weak CL but bright BSE signal, and yields high contents of uranium (0.1 to 0.2 wt.%). A pooled U-Pb Concordia age for this zone is 342.0?±?3.0?Ma (n?=?11, MSWD?=?0.12). The second, outer, overgrowth shell is always bright in the CL image, dark in the BSE image, and has generally low uranium contents (mostly <500?ppm). A pooled U-Pb Concordia age for this zone is 337.1?±?2.7?Ma (n?=?11, MSWD?=?0.22). These results imply that the Variscan HT crystallisation history of the Moldanubian granulites took place over a period of a few million years and was not an extremely rapid subduction-exhumation process. SHRIMP measurements in the protolithic cores yield a cluster of (sub)concordant ages between ??390 and 460?Ma and a few outliers at higher ages mostly represented by cores in cores. Core domains, which are large, homogeneous and with undisturbed igneous oscillatory zoning, yielded preferentially ages between 430 and 460?Ma. We therefore consider that granitic protolith formation took place at that time. The still older inner cores are interpreted as inherited into the granitic melt.  相似文献   
84.
Pointed ROSAT PSPC exposures of 9277 and 6992 sec, directed toward the nearby, single, cool, magnetic white dwarfs GR 290 and EG 250 yielded no counts significantly above the expected background rate. The corresponding flux limits (for an assumed source temperature of l keV) are 1.0 and 1.7 × 10−14erg cm−2 s−1, within the 0.1–2.5 keV bandpass of the instrument (99% confidence limits). This is more than an order of magnitude below the tentative detection level (for GR 290) and limits (for four other similar stars) obtained from archival Einstein data in 1991. The corresponding limits on coronal electron density are comparable with those implied if cyclotron emission is not responsible for any of the features observed in the optical spectra of magnetic white dwarfs. X-ray data currently provide no evidence for the existence of coronae around these stars. A final long observation (25,000 sec of GD 356) is scheduled for later this year on ROSAT, along with coordinated EUVE observations.  相似文献   
85.
86.
The salinity crisis of the Mediterranean during Messinian time was one of the most dramatic episodes of oceanic change of the past 20 or so million years, resulting in the deposition of kilometer thick evaporitic sequences. A large and rapid drawdown of the Mediterranean water level caused erosion and deposition of non-marine sediments in a large ‘Lago Mare’ basin. Both the surface loading by the Lower Messinian evaporites, and the removal of the water load resulted in isostatic/flexural rebound that significantly affected river canyons and topographic slopes. We use flexure models to quantitatively predict possible signatures of these events, and verify these expectations at well-studied margins. The highly irregular shape of the reconstructed basin calls for a three-dimensional model. Near basin margins, plate-bending effects are most pronounced which is why flexure is particularly important for a relatively narrow basin like the Mediterranean. We focus on one specific sea level scenario for the Messinian Salinity Crisis, where most of the evaporite load was deposited during a sea level highstand, followed by a rapid desiccation. Evaporite loading at current sea level is expected to cause subsidence of the deep basins by hundreds of meters and simultaneous uplift of continental parts of the margins. Differential uplift may lead to significant slope angle changes and thus gravity flows. The relative scarcity of Lower Evaporite sequences along the margins may be a result of these phenomena. Normal faulting of Lower Evaporite and older sediments and rocks is expected on the margins. Desiccation enhances erosion of the freshly exposed continental shelf and slope. Subsidence and riverbed sedimentation occurs on the continental margins, and significant uplift towards the basin center. Reverse faulting is predicted at the margins. Finally, regional isostatic uplift following Zanclean flooding is predicted to destabilize margin slope deposits, and to cause marginal uplift, river down-cutting, and normal faulting.  相似文献   
87.
We assessed the reproducibility of river state-of-environment (SoE) water quality measurements in the Wellington Region, New Zealand (NZ). Field staff from GWRC and NIWA conducted 29 side-by-side water sampling and in-situ measurements at six river sites of diverse water quality for 12 variables measured routinely in river SoE monitoring across NZ. Field measurements of water temperature, dissolved oxygen, electrical conductivity and visual clarity agreed closely with strong numerical similarity (within 10%). Numerical similarity ranged widely for laboratory measurements, from strong for nitrate-nitrite-nitrogen to weak for turbidity, dissolved reactive phosphorus, and ammoniacal-nitrogen. Numerical agreement was very weak for laboratory pH (which is problematic) and E. coli–which is ‘tolerable’ for many applications given good correlation (R?=?0.94) over a 2000-fold concentration range. The findings of our inter-agency comparison have contributed to quality assurance recommendations in the NZ National Environmental Monitoring Standard (NEMS) for water quality.  相似文献   
88.
The emergence of volunteered geographic information (VGI) during the past decade has fueled a wide range of research and applications. The assessment of VGI quality and fitness‐of‐use is still a challenge because of the non‐standardized and crowdsourced data collection process, as well as the unknown skill and motivation of the contributors. However, the frequent approach of assessing VGI quality against external data sources using ISO quality standard measures is problematic because of a frequent lack of available external (reference) data, and because for certain types of features, VGI might be more up‐to‐date than the reference data. Therefore, a VGI‐intrinsic measure of quality is highly desirable. This study proposes such an intrinsic measure of quality by developing the concept of aggregated expertise based on the characteristics of a feature's contributors. The article further operationalizes this concept and examines its feasibility through a case study using OpenStreetMap (OSM). The comparison of model OSM feature quality with information from a field survey demonstrates the successful implementation of this novel approach.  相似文献   
89.
Abstract

We investigate the left-lateral slip on the 240-km- long, NE-SW-trending, Malatya-Ovacik fault zone in eastern Turkey. This fault zone splays southwestward from the North Anatolian fault zone near Erzincan, then follows the WSW-trending Ovacik valley between the Munzur and Yilan mountain ranges. It bends back to a SW orientation near Arapkir, from where we trace its main strand SSW beneath the Plio-Quaternary sediment of the Malatya basin. We propose that this fault zone was active during ~5–3 Ma, when it took up 29 km of relative motion between the Turkish and Arabian plates; it ceased to be active when the East Anatolian fault zone formed at ~3 Ma. The geometry of the former Erzincan triple junction, which differs from the modem Karliova triple junction, where the North and East Anatolian fault zones intersect, suggests a possible explanation for why slip on the Malatya- Ovacik fault zone was unable to continue. We interpret the SW- and SSW-trending segments of the Malatya-Ovacik fault zone as transform faults, which define an Euler pole ~1 400 km to the southeast. Its central part along the Ovacik valley, which is ~30° oblique to the adjoining transform faults, is interpreted as the internal fault of a stepover. The adjoining mountain ranges, which now rise up to ~3 300 m, ~2 000 m above the surrounding land surface, are largely the result of the surface uplift which accompanied the components of shortening and thickening of the upper crustal brittle layer that occurred around this stepover while the left-lateral faulting was active. © 2001 Éditions scientifiques et médicales Elsevier SAS  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号