首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   1篇
  国内免费   1篇
测绘学   1篇
大气科学   4篇
地球物理   13篇
地质学   10篇
海洋学   9篇
天文学   5篇
综合类   3篇
自然地理   2篇
  2022年   1篇
  2020年   2篇
  2019年   1篇
  2016年   3篇
  2013年   3篇
  2012年   1篇
  2011年   5篇
  2009年   3篇
  2008年   2篇
  2007年   2篇
  2006年   2篇
  2005年   4篇
  2004年   1篇
  2003年   4篇
  2002年   4篇
  2001年   2篇
  1997年   1篇
  1989年   2篇
  1984年   1篇
  1982年   1篇
  1978年   1篇
  1972年   1篇
排序方式: 共有47条查询结果,搜索用时 15 毫秒
41.
Trapping of fine sediment in a semi-enclosed bay, Palau, Micronesia   总被引:1,自引:0,他引:1  
Airai Bay, Palau, is a small (3 km2), semi-enclosed, mangrove-fringed, meso-tidal, coral lagoon on the southeast coast of Palau. It drains a small catchment area (26 km2) of highly erodible soils in an area with high annual rainfall (3.7 m). River floods are short-lived and the sediment load is very large, with suspended fine sediment concentration exceeding 1500 mg l−1. The resulting river plume is about 2 m thick. The brackish water residence time is about 7 days; during this period the plume remains a distinct surface feature even after river runoff has ceased. About 98% of the riverine fine sediment settles in Airai Bay, of which about 15–30% is deposited in the mangroves during river floods. This mud remains trapped in Airai Bay because the bay is protected from ocean swells and the tidal currents and locally generated wind waves are too small to resuspend the mud in quantity. The mud is smothering coral reefs, creating a phase shift from coral to fleshy algae dominance, and is even changing habitats by creating mud banks. The persistence of Airai Bay marine resources may not be possible without improved soil erosion control in the river catchment.  相似文献   
42.
Fouha Bay is a 400-m-long funnel-shaped, 10-m-deep, coral-fringed embayment on the southwest coast of Guam. It drains a small catchment area (5 km2) of steeply sloping, highly erodible lateritic soils. River floods are short-lived and the sediment load is very large, with suspended sediment concentration (SSC) exceeding 1000 mg l−1. The resulting river plume is about 1 m thick and is pulsing in a series of 1–2 h-long events, with outflow velocity peaking at 0.05 m s−1. Turbulent entrainment results in an oceanic inflow at depth into the bay. As soon as river flow stops, the plume floats passively and takes 5 days to be flushed out of Fouha Bay. The suspended fine sediment flocculates in 5 min and aggregates on ambient transparent exopolymer particles to form muddy marine snow flocs. In calm weather, about 75% of the riverine mud settles out of the river plume into the underlying oceanic water where it forms a transient nepheloid layer. This mud ultimately settles and is trapped in Fouha Bay. Under typhoon-driven, swell waves, the surface plume is at least 7 m thick and bottom entrainment of mud results in SSC exceeding 1000 mg l−1 for several days. It is suggested that successful management of fringing coral reefs adjacent to volcanic islands may not be possible without proper land use management in the surrounding catchment.  相似文献   
43.
A six-month-long study was conducted of the fate of turbid river plumes from the Enipein watershed in Pohnpei, Federated States of Micronesia. Pohnpei is one of the wettest places on earth, with a mean annual rainfall exceeding 4 m in the lowlands and 8 m in the highlands. The river waters were clear of sediment except after major storms with rainfall exceeding 5 cm day−1. Following a storm, the river plume spread in the mangrove fringed estuary and in the coral reef lagoon. The waters were highly stratified in temperature, salinity, and suspended sediment concentration. The brackish water was flushed out in four days, while the suspended sediment all settled out in the estuary, in the mangroves, and in the lagoon including on the coral reefs, in less than one day. The mean rate of sedimentation exceeded 35 mg cm−2 d−1 both over the mangroves and on the adjacent coral reefs. While this leads to no detrimental effects on the mangroves, sediment smothers corals and leads to substantial coral mortality in the lagoon. The mud is not flushed out from the lagoon because there are no strong currents from waves or tides. This high sedimentation rate is attributable to poor farming and land-use practices on the upland areas.  相似文献   
44.
High-resolution, seismic-reflection data elucidate the late Quaternary development of the largest coral-reef complex in the main Hawaiian Islands. Six acoustic facies were identified from reflection characteristics and lithosome geometry. An extensive, buried platform with uniformly low relief was traced beneath fore-reef and marginal shelf environments. This highly reflective surface dips gently seaward to ~130 m depth and locally crops out on the seafloor. It probably represents a wave-cut platform or ancient reef flat. We propose alternative evolutionary models, in which sea-level changes have modulated the development of reef systems, to explain the observed stratigraphic relationships. The primary difference between the models is the origin of the underlying antecedent surface, which arguably could have formed during either regression/lowstand or subsequent transgression.  相似文献   
45.
Given the uncertainty in grade at a mine location, a financially risk-averse decision-maker may prefer to incorporate this uncertainty into the ore selection process. A FORTRAN program risksel is presented to calculate local risk-adjusted optimal ore selections using a negative exponential utility function and three dominance models: mean-variance, mean-downside risk, and stochastic dominance. All four methods are demonstrated in a grade control environment. In the case study, optimal selections range with the magnitude of financial risk that a decision-maker is prepared to accept. Except for the stochastic dominance method, the risk models reassign material from higher cost to lower cost processing options as the aversion to financial risk increases. The stochastic dominance model usually was unable to determine the optimal local selection.  相似文献   
46.
We have modelled the effects of changes in the Earth's magnetic field on the ionosphere as have occurred from 1957 to 1997 using the NCAR Thermosphere–Ionosphere–Electrodynamics General Circulation Model. Previous studies that attempted to quantify these effects used a constant wind field, so that any electro-dynamical coupling processes could not be accounted for. Using TIE-GCM we can account for these processes. We find substantial changes in the F2 layer peak height hmF2 (up to ±20 km) and critical frequency foF2 (up to ±0.5 MHz) over the Atlantic Ocean and South America, purely due to changes in the Earth's magnetic field (i.e. unrelated to greenhouse gas cooling effects, which are often held responsible for long-term trends in hmf2 and fof2). These would make up a significant contribution to observed long-term trends in these areas and therefore must be taken into account in their interpretation. Modelled trends of hmF2 and foF2 exhibit a strong seasonal and diurnal variation, highlighting the importance of separating data with respect to season and local time. Most of the modelled changes in hmF2 and foF2 can be related to changes in plasma transport up or down magnetic field lines driven by neutral winds, changes, which are mostly caused by changes in the inclination of the field, though changes in declination and neutral wind also play a role. Changes in the vertical component of the E×B drift seem to have little effect on hmF2 and foF2.  相似文献   
47.
以非海相介形类为依据而建立的侏罗纪末至白垩纪的生物地层学,尤其是欧洲所谓"Purbeck-Wealden层段"(提塘阶顶部至巴列姆阶/阿普特阶底部)和全球同期沉积层的生物地层学建立已久,但这一生物地层学存有很多问题与局限性。本文对中生代晚期(聚焦于早白垩世)的非海相介形类生物地层学的基本原理、历史、目前进展、存在问题和前景进行了综述。因为介形类的繁殖、扩散与成种机制已有比较成熟的研究,所以介形类的生物地层学的应用潜力被认识已久。然而,全球不同地区中生代晚期的非海相介形类众多的研究积累已构成了一个丰富但常常混乱和矛盾的文献库。这些问题不仅存在于介形类的分类鉴定中,也见于关于古环境和系统发育的解释中。虽然地区性的盆地内的介形类生物地层学研究已产生了好结果,并可能能够用于局部地区的高精度对比。但是在进行地区间(盆地间至全球)的对比时,其实用性广遭怀疑。在过去的二十年间,许多学者采用了将今论古的古生物学研究方法,努力修订和更新中生代晚期的非海相介形类的生物地层学与古环境意义,从而促进了地区间生物地层学研究和对比的发展。古生物学家认识到,对于许多非海相介形类动物来讲,它们的分布和扩散不仅仅局限于单个的水系或较小的地理区域,而是和现生的非海相介形类一样,晚侏罗世至白垩纪的非海相介形类动物和它们的卵可被较大的动物或风长距离搬运,跨越迁移的屏障,进行扩散。鉴于以上事实,地区间的对比必须涉及两大内容:分类学的应用与古环境背景。缺乏适用于地区—全球的稳定和一致的分类学系统是进行正确对比的重要障碍。由于大量地方性分类命名、地方性特有动物的假设、与壳体特征相关的分类和生态型认识的混乱,以及对种内变异尺度的统一认识的缺乏,导致了对生物分异度的过高或过低的估量。非海相白垩纪介形类的地层记录受到诸多因素的影响:分类单元的演化与灭绝、扩散事件、当地的环境变化和地区性至全球的气候变迁。在生物地层学的应用中,我们可以通过不同手段去把握同时代的Cytheroidea,特别是Cypridoidea中具重要地层意义的Cypridea属及其亲近者(即CypridoideaMartin,1940)的分类单元的形态变异度。解释种内变异时需要格外谨慎。区分生物自生(内因)导致的变异(遗传的和形态的变异)和环境(外因)导致的变异(生态表型)是一大难题。比较保守的分类学观念(分类单元很少,但变异极大(分类单元中包含了多种生态表型))有助于不同古环境间的(生物地层)对比。另一方法是运用随着时间的古环境变化及其对介形类组合的组成的影响来进行(生物地层)对比。古生物工作者已在利用受环境控制的周期性介形类组合变化建立对比关系方面进行了大量有意义的尝试,但这些工作仍处在争议中。建立全球生物地层学方法,建立统一而持久的分类概念这一目标可以达到,但不可能在短期内实现。用现代的思想(概念)理解和研究非海相介形类的古生物学和古生物地理学及新资料将有助于修订工作的进展。尽管我们对中生代的非海相介形类的演化和分布的认识还很不全面,但目前我们已取得了可喜的进展。盆地间至大陆间的对比是否可行,早已不是问题。目前和未来的指导原则无疑是发展以介形类为基础,并与其他的年代地层学和地质年代学资料及方案相结合的从地区至全球范围的地层对比系统。因为我们正在迈向一个非海相晚中生代介形类生物地层学的重新解释和应用的新时代,我们必须承认我们还有许多东西需要学习。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号