首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   354篇
  免费   19篇
  国内免费   10篇
测绘学   6篇
大气科学   8篇
地球物理   106篇
地质学   89篇
海洋学   71篇
天文学   71篇
综合类   3篇
自然地理   29篇
  2021年   5篇
  2020年   2篇
  2019年   2篇
  2018年   6篇
  2017年   7篇
  2016年   7篇
  2015年   3篇
  2014年   9篇
  2013年   19篇
  2012年   13篇
  2011年   19篇
  2010年   12篇
  2009年   28篇
  2008年   13篇
  2007年   16篇
  2006年   13篇
  2005年   19篇
  2004年   19篇
  2003年   10篇
  2002年   16篇
  2001年   15篇
  2000年   6篇
  1999年   2篇
  1998年   6篇
  1997年   8篇
  1996年   11篇
  1993年   3篇
  1991年   6篇
  1990年   6篇
  1989年   2篇
  1988年   4篇
  1987年   3篇
  1985年   4篇
  1984年   3篇
  1982年   6篇
  1981年   3篇
  1980年   6篇
  1979年   6篇
  1978年   2篇
  1977年   3篇
  1976年   4篇
  1975年   3篇
  1974年   2篇
  1973年   2篇
  1972年   2篇
  1971年   2篇
  1968年   3篇
  1947年   2篇
  1921年   2篇
  1871年   3篇
排序方式: 共有383条查询结果,搜索用时 0 毫秒
71.
In-situ measurements of interplanetary coronal mass ejections (ICMEs) display a wide range of properties. A distinct subset, “magnetic clouds” (MCs), are readily identifiable by a smooth rotation in an enhanced magnetic field, together with an unusually low solar wind proton temperature. In this study, we analyze Ulysses spacecraft measurements to systematically investigate five possible explanations for why some ICMEs are observed to be MCs and others are not: i) An observational selection effect; that is, all ICMEs do in fact contain MCs, but the trajectory of the spacecraft through the ICME determines whether the MC is actually encountered; ii) interactions of an erupting flux rope (FR) with itself or between neighboring FRs, which produce complex structures in which the coherent magnetic structure has been destroyed; iii) an evolutionary process, such as relaxation to a low plasma-β state that leads to the formation of an MC; iv) the existence of two (or more) intrinsic initiation mechanisms, some of which produce MCs and some that do not; or v) MCs are just an easily identifiable limit in an otherwise continuous spectrum of structures. We apply quantitative statistical models to assess these ideas. In particular, we use the Akaike information criterion (AIC) to rank the candidate models and a Gaussian mixture model (GMM) to uncover any intrinsic clustering of the data. Using a logistic regression, we find that plasma-β, CME width, and the ratio O 7/O 6 are the most significant predictor variables for the presence of an MC. Moreover, the propensity for an event to be identified as an MC decreases with heliocentric distance. These results tend to refute ideas ii) and iii). GMM clustering analysis further identifies three distinct groups of ICMEs; two of which match (at the 86 % level) with events independently identified as MCs, and a third that matches with non-MCs (68 % overlap). Thus, idea v) is not supported. Choosing between ideas i) and iv) is more challenging, since they may effectively be indistinguishable from one another by a single in-situ spacecraft. We offer some suggestions on how future studies may address this.  相似文献   
72.
The spacecraft ISEE-3 was launched in August 1978 and subsequently placed in orbit about the Sun-Earth L1 libration point where it continuously monitored the particles and fields in interplanetary space until mid-1982. The ISEE-3 Energetic Proton Anisotropy Spectrometer makes 3-dimensional intensity measurements of 35–1600 keV, Z ? 1 ions. This data is used in conjunction with simultaneous solar wind plasma and magnetic field data from the same spacecraft to study the properties of ions in interaction regions lying at the leading edges of nine corotating high speed solar wind streams observed during October 1978–July 1979. Seven streams have an enhancement of ? 300 keV ions in the compressed fast stream plasma between the stream interface and interaction region trailing edge. These enhancements are associated with plasma heating to above 3 × 105 K, have soft spectra (spectral index ~ 4.5?6.0) and in five cases show anti-solar streaming in the solar wind frame.  相似文献   
73.
We investigated the effects of rainfall and the number of animals on changes in vegetation and on the output of milk and meat from the communal areas of Namaqualand. Previously published short- and long-term models link processes that range from the levels of tissue (in, for example, the mammary gland), to the milk yields of individual animals, to the growth and survival of their young and to long-term changes in plant species populations at the ecosystem level. These models have been used to study how different factors and management strategies affect livestock productivity and vegetation composition on a 20,000 ha rangeland in Namaqualand. First, the inter-relations between rainfall, stocking rate and productivity were studied using the short-term model. This model shows that in addition to total rainfall and stocking rate, the timing of rainfall within a year also influences doe live weight and survival to the end of the year. When the long-term model is run, using recorded rainfall, predictions of small stock numbers agree closely with livestock data recorded over the same 30-year period. One thousand replicates of 100-year runs of the long-term model were then used to study the probable impact of different upper limits to stock numbers on animal performance. Off take (sales and slaughterings) are maximal when stock numbers are limited to 2000 adults. Animal numbers increase marginally as the limit is increased above this level, but the variability between years in numbers increases. Secondly, the long-term model was used to study the long-term effects of the stocking rate strategies on rangeland condition. The model predicts that although these effects are variable, when moderately degraded range is stocked with an upper limit at the recommended level it is unable to recover to less degraded states over 100 years. Thirdly, the model was used to examine the effects of reduction in stock numbers and slaughtering of kids in a drought year on goat numbers during the subsequent 5 years. Finally, the model predicts that a 10% reduction in mean annual rainfall will lead to a 35% reduction in animal numbers over 200 years.  相似文献   
74.
Surfaces of planets and small bodies of our Solar System are often covered by a layer of granular material that can range from a fine regolith to a gravel-like structure of varying depths. Therefore, the dynamics of granular materials are involved in many events occurring during planetary and small-body evolution thus contributing to their geological properties.We demonstrate that the new adaptation of the parallel N-body hard-sphere code pkdgrav has the capability to model accurately the key features of the collective motion of bidisperse granular materials in a dense regime as a result of shaking. As a stringent test of the numerical code we investigate the complex collective ordering and motion of granular material by direct comparison with laboratory experiments. We demonstrate that, as experimentally observed, the scale of the collective motion increases with increasing small-particle additive concentration.We then extend our investigations to assess how self-gravity and external gravity affect collective motion. In our reduced-gravity simulations both the gravitational conditions and the frequency of the vibrations roughly match the conditions on asteroids subjected to seismic shaking, though real regolith is likely to be much more heterogeneous and less ordered than in our idealised simulations. We also show that collective motion can occur in a granular material under a wide range of inter-particle gravity conditions and in the absence of an external gravitational field. These investigations demonstrate the great interest of being able to simulate conditions that are to relevant planetary science yet unreachable by Earth-based laboratory experiments.  相似文献   
75.
An extensive study of peridotitic sulfide inclusion bearing diamonds and their prospective harzburgitic host rocks from the 53 Ma Panda kimberlite pipe, Ekati Mine, NWT Canada, has been undertaken with the Re–Os system to establish their age and petrogenesis. Diamonds with peridotitic sulfide inclusions have poorly aggregated nitrogen (<30% N as B centers) at N contents of 200–800 ppm which differs from that of chromite and silicate bearing diamonds and indicates residence in the cooler portion of the Slave craton lithospheric mantle. For most of the sulfide inclusions, relatively low Re contents (average 0.457 ppm) and high Os contents (average 339 ppm) lead to extremely low 187Re/188Os, typically << 0.05. An age of 3.52 ± 0.17 Ga (MSWD = 0.46) and a precise initial 187Os/188Os of 0.1093 ± 0.0001 are given by a single regression of 11 inclusions from five diamonds that individually provide coincident internal isochrons. This initial Os isotopic composition is 6% enriched in 187Os over 3.5 Ga chondritic or primitive mantle. Sulfide inclusions with less radiogenic initial Os isotopic compositions reflect isotopic heterogeneity in diamond forming fluids. The harzburgites have even lower initial 187Os/188Os than the sulfide inclusions, some approaching the isotopic composition of 3.5 Ga chondritic mantle. In several cases isotopically distinct sulfides occur in different growth zones of the same diamond. This supports a model where C–O–H–S fluids carrying a radiogenic Os signature were introduced into depleted harzburgite and produced diamonds containing sulfides conforming to the 3.5 Ga isochron. Reaction of this fluid with harzburgite led to diamonds with less radiogenic inclusions while elevating the Os isotope ratios of some harzburgites. Subduction is a viable way of introducing such fluids. This implies a role for subduction in creating early continental nuclei at 3.5 Ga and generating peridotitic diamonds.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   
76.
We present measurements of the altitude and eastward velocity component of mesospheric clouds in 35 imaging sequences acquired by the Mars Odyssey (ODY) spacecraft’s Thermal Emission Imaging System visible imaging subsystem (THEMIS-VIS). We measure altitude by using the parallax drift of high-altitude features, and the velocity by exploiting the time delay in the THEMIS-VIS imaging sequence.We observe two distinct classes of mesospheric clouds: equatorial mesospheric clouds observed between 0° and 180° Ls; and northern mid-latitude clouds observed only in twilight in the 200–300° Ls period. The equatorial mesospheric clouds are quite rare in the THEMIS-VIS data set. We have detected them in only five imaging sequences, out of a total of 2048 multi-band equatorial imaging sequences. All five fall between 20° south and 0° latitude, and between 260° and 295° east longitude. The mid-latitude mesospheric clouds are apparently much more common; for these we find 30 examples out of 210 northern winter mid-latitude twilight imaging sequences. The observed mid-latitude clouds are found, with only one exception, in the Acidalia region, but this is quite likely an artifact of the pattern of THEMIS-VIS image targeting. Comparing our THEMIS-VIS images with daily global maps generated from Mars Orbiter Camera Wide Angle (MOC-WA) images, we find some evidence that some mid-latitude mesospheric cloud features correspond to cloud features commonly observed by MOC-WA. Comparing the velocity of our mesospheric clouds with a GCM, we find good agreement for the northern mid-latitude class, but also find that the GCM fails to match the strong easterly winds measured for the equatorial clouds.Applying a simple radiative transfer model to some of the equatorial mesospheric clouds, we find good model fits in two different imaging sequences. By using the observed radiance contrast between cloud and cloud-free regions at multiple visible-band wavelengths, these fits simultaneously constrain the optical depths and particles sizes of the clouds. The particle sizes are constrained primarily by the relative contrasts at the available wavelengths, and are found to be quite different in the two imaging sequences: reff = 0.1 μm and reff = 1.5 μm. The optical depths (constrained by the absolute contrasts) are substantial: 0.22 and 0.5, respectively. These optical depths imply a mass density that greatly exceeds the saturated mass density of water vapor at mesospheric temperatures, and so the aerosol particles are probably composed mainly of CO2 ice. Our simple radiative transfer model is not applicable to twilight, when the mid-latitude mesospheric clouds were observed, and so we leave the properties of these clouds as a question for further work.  相似文献   
77.
We investigate the ability of modern general circulation models (GCMs) to simulate transport in the martian atmosphere using measurements of argon as a proxy for the transport processes. Argon provides the simplest measure of transport as it is a noble gas with no sinks or sources on seasonal timescales. Variations in argon result solely from ‘freeze distillation’, as the atmosphere condenses at the winter poles, and from atmospheric transport. Comparison of all previously published models when rescaled to a common definition of the argon enhancement factor (EF) suggest that models generally do a poor job in predicting the peak enhancement in southern winter over the winter pole – the time when the capability of the model transport approaches are most severely tested. Despite observed peak EF values of ~6, previously published model predictions peaked at EF values of only 2–3. We introduce a new GCM that provides a better treatment of mass conservation within the dynamical core, includes more sophisticated tracer transport approaches, and utilizes a cube–sphere grid structure thus avoiding the grid-point convergence problem at the pole that exists for most current Mars GCMs. We describe this model – the Ashima Research/Massachusetts Institute of Technology Mars General Circulation Model (Ashima/MIT Mars GCM) and use it to demonstrate the significant sensitivity of peak EF to the choices of transport approach for both tracers and heat. We obtain a peak EF of 4.75 which, while over 50% higher than any prior model, remains well short of the observed value. We show that the polar EF value in winter is primarily determined by the competition between two processes: (1) mean meridional import of lower-latitude air not enriched in argon and (2) the leakage of enriched argon out of the polar column by eddies in the lowest atmospheric levels. We suggest possibilities for improving GCM representation of the CO2 cycle and the general circulation that may further improve the simulation of the argon cycle. We conclude that current GCMs may be insufficient for detailed simulation of transport-sensitive problems like the water cycle and potentially also the dust cycle.  相似文献   
78.
Magmatic andalusite from the South Mountain batholith,Nova Scotia   总被引:3,自引:0,他引:3  
Accessory andalusite has been found in some late-stage granitic differentiates of the South Mountain batholith. The andalusite is petrographically distinct from the andalusite of the thermal aureole, and it occurs in regions of the batholith which show little evidence of contamination by the country rocks. Analyses of biotites from andalusite-bearing and andalusite-free phases suggest that those coexisting with andalusite actually grew in equilibrium with the andalusite. It is concluded that magmatic andalusite must be confined mainly to water-saturated, peraluminous, epizonal granites, and some possible P-T paths for the crystallization of magmatic andalusite are considered.  相似文献   
79.
This paper presents the first glacial chronology for the Lahul Himalaya, Northern India. The oldest glaciation, the Chandra Glacial Stage, is represented by glacially eroded benches at altitudes greater than 4300 m above sea-level. This glaciation was probably of a broad valley type. The second glaciation, the Batal Glacial Stage, is represented by highly weathered and dissected lateral moraines, which are present along the Chandra valley and some of its tributaries. This was an extensive valley glaciation. The third major glaciation, the Kulti Glacial Stage, is represented by well-preserved moraines in the main tributary valleys of the Chandra valley. This represents a less extensive valley glaciation. Two minor glacial advances, the Sonapani I and II, are represented by small sharp-crested moraines, which are within a few hundred metres or few kilometres of the present-day glaciers. The change in style and extent of glaciation is attributed to an increase in aridity throughout the Quaternary, due either to global climatic change or uplift of the Pir Panjal mountains to the south of Lahul, which restricted the northward penetration of the south Asian summer monsoon. © 1996 John Wiley & Sons, Ltd.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号