首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   354篇
  免费   19篇
  国内免费   10篇
测绘学   6篇
大气科学   8篇
地球物理   106篇
地质学   89篇
海洋学   71篇
天文学   71篇
综合类   3篇
自然地理   29篇
  2021年   5篇
  2020年   2篇
  2019年   2篇
  2018年   6篇
  2017年   7篇
  2016年   7篇
  2015年   3篇
  2014年   9篇
  2013年   19篇
  2012年   13篇
  2011年   19篇
  2010年   12篇
  2009年   28篇
  2008年   13篇
  2007年   16篇
  2006年   13篇
  2005年   19篇
  2004年   19篇
  2003年   10篇
  2002年   16篇
  2001年   15篇
  2000年   6篇
  1999年   2篇
  1998年   6篇
  1997年   8篇
  1996年   11篇
  1993年   3篇
  1991年   6篇
  1990年   6篇
  1989年   2篇
  1988年   4篇
  1987年   3篇
  1985年   4篇
  1984年   3篇
  1982年   6篇
  1981年   3篇
  1980年   6篇
  1979年   6篇
  1978年   2篇
  1977年   3篇
  1976年   4篇
  1975年   3篇
  1974年   2篇
  1973年   2篇
  1972年   2篇
  1971年   2篇
  1968年   3篇
  1947年   2篇
  1921年   2篇
  1871年   3篇
排序方式: 共有383条查询结果,搜索用时 20 毫秒
271.
Some phytoplankton species have been predicted to contribute more to the biological pump than others. In this study, we examine the potential of species distribution modelling (SDM) for describing current and predicting future global distributions of two phytoplankton species: the diatom Chaetoceros diadema and the coccolithophore Emiliania huxleyi. Species distribution models (SDMs) were constructed using species data from the Ocean Biogeographic Information System and environmental layers from the Coupled Model Intercomparison Project Phase 5. The resulting distributions were evaluated by comparing predicted distributions with those found via a literature survey. The developed SDMs were then applied to predict future changes in the distributions of these species using environmental conditions based on the Intergovernmental Panel on Climate Change's Representative Concentration Pathways scenario 8.5 climate scenario, predicted for the year 2100. The model predicts that the total ocean area covered by C. diadema and E. huxleyi will decline under the examined climate scenario by 8% and 16%, respectively. Furthermore, the future ranges above depths >1,000 m are predicted to decline by 28% for C. diadema. As the biological pump is most active in deep ocean waters, this projected decrease in range in the deeper regions of the ocean may have implications for carbon sequestration, particularly for the diatom species. We conclude that SDM appears to be a robust tool for examining phytoplankton distributions. If the predicted changes in ranges of these two species under future ocean conditions are realised, this may result in a reduced contribution of these two phytoplankton species to carbon sequestration via the biological pump.  相似文献   
272.
An adaptive optics(AO) system based on a stochastic parallel gradient descent(SPGD) algorithm is proposed to reduce the speckle noises in the optical system of a stellar coronagraph in order to further improve the contrast. The principle of the SPGD algorithm is described briey and a metric suitable for point source imaging optimization is given. The feasibility and good performance of the SPGD algorithm is demonstrated by an experimental system featured with a 140-actuator deformable mirror and a Hartmann-...  相似文献   
273.
Impact-induced seismic vibrations have long been suspected of being an important surface modification process on small satellites and asteroids. In this study, we use a series of linked seismic and geomorphic models to investigate the process in detail. We begin by developing a basic theory for the propagation of seismic energy in a highly fractured asteroid, and we use this theory to model the global vibrations experienced on the surface of an asteroid following an impact. These synthetic seismograms are then applied to a model of regolith resting on a slope, and the resulting downslope motion is computed for a full range of impactor sizes. Next, this computed downslope regolith flow is used in a morphological model of impact crater degradation and erasure, showing how topographic erosion accumulates as a function of time and the number of impacts. Finally, these results are applied in a stochastic cratering model for the surface of an Eros-like body (same volume and surface area as the asteroid), with craters formed by impacts and then erased by the effects of superposing craters, ejecta coverage, and seismic shakedown. This simulation shows good agreement with the observed 433 Eros cratering record at a Main Belt exposure age of 400±200 Myr, including the observed paucity of small craters. The lowered equilibrium numbers (loss rate = production rate) for craters less than ∼100 m in diameter is a direct result of seismic erasure, which requires less than a meter of mobilized regolith to reproduce the NEAR observations. This study also points to an upper limit on asteroid size for experiencing global, surface-modifying, seismic effects from individual impacts of about 70-100 km (depending upon asteroid seismic properties). Larger asteroids will experience only localized (regional) seismic effects from individual impacts.  相似文献   
274.
275.
 This special issue of Geo-Marine Letters, “Benthic Boundary Layer Processes in the Lower Florida Keys,” includes 12 papers that present preliminary results from the Key West Campaign. The Dry Tortugas and Marquesas Keys test sites were selected by a group of 115 scientists and technicians to study benthic boundary layer processes in a carbonate environment controlled by bioturbation and biogeochemical processes. Major activities included remote sediment classification; high-frequency acoustic scattering experiments; sediment sampling for radiological, geotechnical, biological, biogeochemical, physical, and geoacoustic studies; and hydrodynamic studies using an instrumented tetrapod. All these data are being used to improve our understanding of the effects of environmental processes on sediment structure and behavior.  相似文献   
276.
1INTRODUCTIONPolycyclicaromatichydrocarbons (PAHs)depo sit edinmarineenvironmentsfromavarietyofsourcessuchaswastewater,industrialanddomesticdischarges,andoilspills.Themajorityofthesesourcesfrompetrogenicoriginischaracterizedbyadominanceoflowmolecularweightaromaticcompounds,especiallynaphthaleneandalkylatedPAHs(Sportoletal.,1 983 ) .Crudeoilanditsrefinedproductssuchasgasoline,keroseneandotherfu eloilshaveahighcontentofalkylatedPAHsduetotheirslowformationattemperatureslowerthanthatofcomb…  相似文献   
277.
278.
279.
280.
Insights into collisional physics may be obtained by studying the asteroid belt, where large-scale collisions produced groups of asteroid fragments with similar orbits and spectra known as the asteroid families. Here we describe our initial study of the Karin cluster, a small asteroid family that formed 5.8±0.2 Myr ago in the outer main belt. The Karin cluster is an ideal ‘natural laboratory’ for testing the codes used to simulate large-scale collisions because the observed fragments produced by the 5.8-Ma collision suffered apparently only limited dynamical and collisional erosion. To date, we have performed more than 100 hydrocode simulations of impacts with non-rotating monolithic parent bodies. We found good fits to the size-frequency distribution of the observed fragments in the Karin cluster and to the ejection speeds inferred from their orbits. These results suggest that the Karin cluster was formed by a disruption of an ≈33-km-diameter asteroid, which represents a much larger parent body mass than previously estimated. The mass ratio between the parent body and the largest surviving fragment, (832) Karin, is ≈0.15-0.2, corresponding to a highly catastrophic event. Most of the parent body material was ejected as fragments ranging in size from yet-to-be-discovered sub-km members of the Karin cluster to dust grains. The impactor was ≈5.8 km across. We found that the ejections speeds of smaller fragments produced by the collision were larger than those of the larger fragments. The mean ejection speeds of >3-km-diameter fragments were . The model and observed ejection velocity fields have different morphologies perhaps pointing to a problem with our modeling and/or assumptions. We estimate that ∼5% of the large asteroid fragments created by the collision should have satellites detectable by direct imaging (separations larger than 0.1 arcsec). We also predict a large number of ejecta binary systems with tight orbits. These binaries, located in the outer main belt, could potentially be detected by lightcurve observations. Hydrocode modeling provides important constraints on the interior structure of asteroids. Our current work suggests that the parent asteroid of the Karin cluster may have been an unfractured (or perhaps only lightly fractured) monolithic object. Simulations of impacts into fractured/rubble pile targets were so far unable to produce the observed large gap between the first and second largest fragment in the Karin cluster, and the steep slope at small sizes (≈6.3 differential index). On the other hand, the parent asteroid of the Karin cluster was produced by an earlier disruptive collision that created the much larger, Koronis family some 2-3 Gyr ago. Standard interpretation of hydrocode modeling then suggests that the parent asteroid of the Karin cluster should have been formed as a rubble pile from Koronis family debris. We discuss several solutions to this apparent paradox.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号