首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   578篇
  免费   28篇
  国内免费   14篇
测绘学   35篇
大气科学   36篇
地球物理   138篇
地质学   307篇
海洋学   20篇
天文学   54篇
综合类   7篇
自然地理   23篇
  2023年   4篇
  2022年   12篇
  2021年   30篇
  2020年   26篇
  2019年   24篇
  2018年   56篇
  2017年   44篇
  2016年   74篇
  2015年   35篇
  2014年   61篇
  2013年   68篇
  2012年   44篇
  2011年   42篇
  2010年   26篇
  2009年   21篇
  2008年   9篇
  2007年   6篇
  2006年   8篇
  2005年   2篇
  2004年   4篇
  2003年   5篇
  2001年   1篇
  2000年   3篇
  1998年   3篇
  1997年   5篇
  1991年   1篇
  1989年   1篇
  1979年   1篇
  1977年   1篇
  1975年   3篇
排序方式: 共有620条查询结果,搜索用时 15 毫秒
531.
This paper presents a non‐linear coupled finite element–boundary element approach for the prediction of free field vibrations due to vibratory and impact pile driving. Both the non‐linear constitutive behavior of the soil in the vicinity of the pile and the dynamic interaction between the pile and the soil are accounted for. A subdomain approach is used, defining a generalized structure consisting of the pile and a bounded region of soil around the pile, and an unbounded exterior linear soil domain. The soil around the pile may exhibit non‐linear constitutive behavior and is modelled with a time‐domain finite element method. The dynamic stiffness matrix of the exterior unbounded soil domain is calculated using a boundary element formulation in the frequency domain based on a limited number of modes defined on the interface between the generalized structure and the unbounded soil. The soil–structure interaction forces are evaluated as a convolution of the displacement history and the soil flexibility matrices, which are obtained by an inverse Fourier transformation from the frequency to the time domain. This results in a hybrid frequency–time domain formulation of the non‐linear dynamic soil–structure interaction problem, which is solved in the time domain using Newmark's time integration method; the interaction force time history is evaluated using the θ‐scheme in order to obtain stable solutions. The proposed hybrid formulation is validated for linear problems of vibratory and impact pile driving, showing very good agreement with the results obtained with a frequency‐domain solution. Linear predictions, however, overestimate the free field peak particle velocities as observed in reported field experiments during vibratory and impact pile driving at comparable levels of the transferred energy. This is mainly due to energy dissipation related to plastic deformations in the soil around the pile. Ground vibrations due to vibratory and impact pile driving are, therefore, also computed with a non‐linear model where the soil is modelled as an isotropic elastic, perfectly plastic solid, which yields according to the Drucker–Prager failure criterion. This results in lower predicted free field vibrations with respect to linear predictions, which are also in much better agreement with experimental results recorded during vibratory and impact pile driving. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
532.
Observations of the relation between continuum intensity and magnetic field strength in sunspots have been made for nearly five decades. This work presents full-Stokes measurements of the full-split (\(g = 3\)) line Fe i 1564.85 nm with a spatial resolution of \(0.5^{\prime\prime}\) obtained with the GREGOR Infrared Spectrograph in three large sunspots. The continuum intensity is corrected for instrumental scattered light, and the brightness temperature is calculated. Magnetic field strength and inclination are derived directly from the line split and the ratio of Stokes components. The continuum intensity (temperature) relations to the field strength are studied separately in the umbra, light bridges, and penumbra. The results are consistent with previous studies, and it was found that the scatter of values in the relations increases with increasing spatial resolution thanks to resolved fine structures. The observed relations show trends common for the umbra, light bridges, and the inner penumbra, while the outer penumbra has a weaker magnetic field than the inner penumbra at equal continuum intensities. This fact can be interpreted in terms of the interlocking comb magnetic structure of the penumbra. A comparison with data obtained from numerical simulations was made. The simulated data generally have a stronger magnetic field and a weaker continuum intensity than the observations, which may be explained by stray light and limited spatial resolution of the observations, and also by photometric inaccuracies of the simulations.  相似文献   
533.
Transition boundary between Zagros continental collision and Makran oceanic-continental subduction can be specified by two wide limits: (a) Oman Line is the seismicity boundary with a sizeable reduction in seismicity rate from Zagros in the west to Makran in the east; and (b) the Zendan-Minab-Palami (ZMP) fault system is believed to be a prominent tectonic boundary. The purpose of this paper is to analyze the stress field in the Zagros-Makran transition zone by the iterative joint inversion method developed by Vavrycuk (Geophysical Journal International 199:69-77, 2014). The results suggest a rather uniform pattern of the stress field around these two boundaries. We compare the results with the strain rates obtained from the Global Positioning System (GPS) network stations. In most cases, the velocity vectors show a relatively good agreement with the stress field except for the Bandar Abbas (BABS) station which displays a relatively large deviation between the stress field and the strain vector. This deviation probably reflects a specific location of the BABS station being in the transition zone between Zagros continental collision and Makran subduction zones.  相似文献   
534.
This paper presents a stochastic model for multicomponent competitive monovalent cation exchange in hierarchical porous media. Reactive transport in porous media is highly sensitive to heterogeneities in physical and chemical properties, such as hydraulic conductivity (K), and cation exchange capacity (CEC). We use a conceptual model for multimodal reactive mineral facies and develop a Eulerian-based stochastic theory to analyze the transport of multiple cations in heterogeneous media with a hierarchical organization of reactive minerals. Numerical examples investigate the retardation factors and dispersivities in a chemical system made of three monovalent cations (Na+, K+, and Cs+). The results demonstrate how heterogeneity influences the transport of competitive monovalent cations, and highlight the importance of correlations between K and CEC. Further sensitivity analyses are presented investigating how the dispersion and retardation of each cation are affected by the means, variances, and integral scales of K and CEC. The volume fraction of organic matter is shown to be another important parameter. The Eulerian stochastic framework presented in this work clarifies the importance of each system parameters on the migration of cation plumes in formations with hierarchical organization of facies types. Our stochastic approach could be used as an alternative to numerical simulations for 3D reactive transport in hierarchical porous media, which become prohibitively expensive for the multicomponent applications considered in this work.  相似文献   
535.
Complex and variable nature of the river sediment yield caused many problems in estimating the long-term sediment yield and problems input into the reservoirs. Sediment Rating Curves (SRCs) are generally used to estimate the suspended sediment load of the rivers and drainage watersheds. Since the regression equations of the SRCs are obtained by logarithmic retransformation and have a little independent variable in this equation, they also overestimate or underestimate the true sediment load of the rivers. To evaluate the bias correction factors in Kalshor and Kashafroud watersheds, seven hydrometric stations of this region with suitable upstream watershed and spatial distribution were selected. Investigation of the accuracy index (ratio of estimated sediment yield to observed sediment yield) and the precision index of different bias correction factors of FAO, Quasi-Maximum Likelihood Estimator (QMLE), Smearing, and Minimum-Variance Unbiased Estimator (MVUE) with LSD test showed that FAO coefficient increases the estimated error in all of the stations. Application of MVUE in linear and mean load rating curves has not statistically meaningful effects. QMLE and smearing factors increased the estimated error in mean load rating curve, but that does not have any effect on linear rating curve estimation.  相似文献   
536.
The first step in any seismic hazard study is the definition of seismogenic sources and the estimation of magnitude-frequency relationships for each source. There is as yet no standard methodology for source modeling and many researchers have worked on this topic. This study is an effort to define linear and area seismic sources for Northern Iran. The linear or fault sources are developed based on tectonic features and characteristic earthquakes while the area sources are developed based on spatial distribution of small to moderate earthquakes. Time-dependent recurrence relationships are developed for fault sources using renewal approach while time-independent frequency-magnitude relationships are proposed for area sources based on Poisson process. GIS functionalities are used in this study to introduce and incorporate spatial-temporal and geostatistical indices in delineating area seismic sources. The proposed methodology is used to model seismic sources for an area of about 500 by 400 square kilometers around Tehran. Previous researches and reports are studied to compile an earthquake/fault catalog that is as complete as possible. All events are transformed to uniform magnitude scale; duplicate events and dependent shocks are removed. Completeness and time distribution of the compiled catalog is taken into account. The proposed area and linear seismic sources in conjunction with defined recurrence relationships can be used to develop time-dependent probabilistic seismic hazard analysis of Northern Iran.  相似文献   
537.
This study aimed to evaluate the spatial and temporal distribution of heavy metals (Cd, Cr, Cu, Co, Fe, Pb, Ni, V, and Zn) in the sediments of Bayan Lepas Free Industrial Zone of Penang, Malaysia. Ten sampling stations were selected and sediment samples were collected during low tide (2012 ? 2013). Metals were analyzed and the spatial distribution of metals were evaluated based on GIS mapping. According to interim sediment quality guidelines (ISQG), metal contents ranged from below low level to above high level at different stations. Based on the geoaccumulation index (Igeo) of sediment, sampling stations were categorized from unpolluted to strongly polluted. The enrichment factor (EF) of metals in the sediment varied between no enrichment to extremely high enrichment. The potential ecological risk index (RI) indicated Bayan Lepas FIZ was at low risk.  相似文献   
538.
The hyperbolic Radon transform has a long history of applications in seismic data processing because of its ability to focus/sparsify the data in the transform domain. Recently, deconvolutive Radon transform has also been proposed with an improved time resolution which provides improved processing results. The basis functions of the (deconvolutive) Radon transform, however, are time-variant, making the classical Fourier based algorithms ineffective to carry out the required computations. A direct implementation of the associated summations in the time–space domain is also computationally expensive, thus limiting the application of the transform on large data sets. In this paper, we present a new method for fast computation of the hyperbolic (deconvolutive) Radon transform. The method is based on the recently proposed generalized Fourier slice theorem which establishes an analytic expression between the Fourier transforms associated with the data and Radon plane. This allows very fast computations of the forward and inverse transforms simply using fast Fourier transform and interpolation procedures. These canonical transforms are used within an efficient iterative method for sparse solution of (deconvolutive) Radon transform. Numerical examples from synthetic and field seismic data confirm high performance of the proposed fast algorithm for filling in the large gaps in seismic data, separating primaries from multiple reflections, and performing high-quality stretch-free stacking.  相似文献   
539.
Construction of managed aquifer recharge structures(MARS)to store floodwater is a common strategy for storing depleted groundwater resources in arid and semi-arid regions,as part of integrated water resources management(IWRM).MARS divert surface water to groundwater,but this can affect downstream fluvial processes.The impact of MARS on fluvial processes was investigated in this study by combining remote sensing techniques with hydro-sediment modeling for the case of the Kaboutar-Ali-Chay aquifer,northwestern Iran.The impact of MARS on groundwater dynamics was assessed,sedimentation across the MARS was modeled using a 2D hydrodynamic model,and morphological changes were quantified in the human-impacted alluvial fan using Landsat time series data and statistical methods.Changes were detected by comparing data for the periods before(1985e1996)and after(1997 e2018)MARS construction.The results showed that the rate of groundwater depletion decreased from 2.14 m/yr before to 0.86 m/yr after MARS construction.Hydro-sediment modeling revealed that MARS ponds slowed water outflow,resulting in a severe decrease in sediment load which lead to a change from sediment deposition to sediment erosion in the alluvial fan.Morphometric analyses revealed decreasing alluvial fan area and indicated significant differences(p<0.01)between pre-and post-impact periods for different morphometric parameters analyzed.The rate of change in area of the Kaboutar-Ali-Chay alluvial fan changed from0.228 to0.115 km2/year between pre-and post-impact periods.  相似文献   
540.
This paper studies emergence/generation of power law in rank-order distribution of axial line length, which is a global pattern observed in real cities, due to interaction of a set of seven simple spatial rules at a local scale. These rules and their interactions form a model expected to simulate the morphological structure of free spaces in unplanned organic pedestrian small cities. Effects of each of the seven rules are discussed through repeated simulations of eight possible combinations of the rules, using a bottom-up process. The results show that the rules generate environments with statistically stable rank-order distribution of axial line length that follows the power law. It means that the axial maps of the simulated environments have a scale-free hierarchical structure such that their distributions lean toward short axial lines. It also represents dominance of local spatial structure, as the model renders a faster rate of growth at a local scale while allowing a steady growth at a global scale.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号