首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   538篇
  免费   23篇
  国内免费   14篇
测绘学   34篇
大气科学   34篇
地球物理   131篇
地质学   291篇
海洋学   19篇
天文学   38篇
综合类   6篇
自然地理   22篇
  2023年   3篇
  2022年   12篇
  2021年   31篇
  2020年   26篇
  2019年   24篇
  2018年   52篇
  2017年   42篇
  2016年   71篇
  2015年   33篇
  2014年   49篇
  2013年   60篇
  2012年   42篇
  2011年   41篇
  2010年   26篇
  2009年   20篇
  2008年   9篇
  2007年   6篇
  2006年   6篇
  2005年   2篇
  2004年   4篇
  2003年   2篇
  2001年   1篇
  2000年   1篇
  1998年   4篇
  1997年   4篇
  1991年   1篇
  1975年   3篇
排序方式: 共有575条查询结果,搜索用时 15 毫秒
61.
Theoretical and Applied Climatology - Land use change is an important determinant of hydrological processes and is known to affect hydrological parameters such as runoff volume, flood frequency,...  相似文献   
62.
The evaluation of seismic risk of spatially distributed systems requires the spatial correlation model for ground motion intensity measures. This study investigates the spatial correlation of four earthquakes recorded in northern Iran. The intra-event spatial correlation for both horizontal and vertical components of spectral acceleration at eight periods in the range of 0.0–3.0 s is estimated using geostatistical tools. An exponential form is chosen to fit experimental semivariograms, and the correlation ranges of spectral accelerations as a function of period are derived. The results show similar trend of correlation ranges for both components. It should be mentioned that the ranges for the vertical component, in general, are higher than those observed for the horizontal one. For both components, the correlation ranges as a function of period are divided into three segments. The first and the third one are increasing while the second one is decreasing with increasing period.  相似文献   
63.
Eikonal solvers often have stability problems if the velocity model is mildly heterogeneous. We derive a stable and compact form of the eikonal equation for P‐wave propagation in vertical transverse isotropic media. The obtained formulation is more compact than other formulations and therefore computationally attractive. We implemented ray shooting for this new equation through a Hamiltonian formalism. Ray tracing based on this new equation is tested on both simple as well as more realistic mildly heterogeneous velocity models. We show through examples that the new equation gives travel times that coincide with the travel time picks from wave equation modelling for anisotropic wave propagation.  相似文献   
64.
The saltation regime is very important for understanding the sediment transport mechanism. However,there is no consensus on a model for the saltation regime. This study answers several questions raised with respect to the Eulerian-Lagrangian modeling of sediment transport. The first question is why the previous saltation models that use different combinations of hydrodynamic forces yielded acceptable results? The second question is which shear lift model(i.e. a shear lift expression and its coefficient) is more appropriate? Another important question is which hydrodynamic forces have greater contributions to the saltation characteristics of a sediment particle? The last question is what are the contributions of the turbulence fluctuations as well as effects of using two-and three-dimensional(2 D and 3 D) models on the simulation results? In order to fairly answer these questions, a systematic study was done by considering different scenarios. The current study is the first attempt to clearly discuss these issues. A comprehensive 3 D saltation model for non-cohesive sediment was developed that includes all the hydrodynamic forces acting on the particle. The random nature of sediment transport was included using turbulent flow and bed-particle collision models. The eddy interaction model was applied to generate a3 D turbulent flow field. Bed-particle collisions were considered using the concept of a contact zone and a corresponding contact point. The validation of the model was done using the available experimental data for a wide range of sediment size(0.03 to 4.8 cm). For the first question, the results indicated that some of the hydrodynamic effects show opposing trends and some have negligible effects. With these opposing effects it is possible to adjust the coefficients of different models to achieve acceptable agreement with the same experimental data while omitting some aspects of the physics of the process. A suitable model for the shear lift force was developed by linking the lift coefficient to the drag coefficient and the contributions of the hydrodynamic forces and turbulence fluctuations as well as the consequences of using of 2 D and 3 D models were studied. The results indicate that the shear lift force and turbulent flow fluctuations are important factors for the saltation of both sand and gravel, and they cannot be ignored.  相似文献   
65.
Natural Hazards - Water stress or more specifically drought assessment plays a key role in water management, especially in extreme climate conditions. Basically, globally gridded satellite-based...  相似文献   
66.
Detection, monitoring and precise assessment of the snow covered regions is an important issue. Snow cover area and consequently the amount of runoff generated from snowmelt have a significant effect on water supply management. To precisely detect and monitor the snow covered area we need satellite images with suitable spatial and temporal resolutions where we usually lose one for the other. In this study, products of two sensors MODIS and ASTER both on board of TERRA platform having low and high spatial resolution respectively were used. The objective of the study was to modify the snow products of MODIS by using simultaneous images of ASTER. For this, MODIS snow index image with high temporal resolution were compared with that of ASTER, using regression and correlation analysis. To improve NDSI index two methods were developed. The first method generated from direct comparison of ASTER averaged NDSI with those of MODIS (MODISI). The second method generated by dividing MODIS NDSI index into 10 codes according to their percentage of surface cover and then compared the results with the difference between ASTER averaged and MODIS snow indices (SCMOD). Both methods were tested against some 16 MODIS pixels. It is found that the precision of the MODISI method was more than 96%. This for SCMOD was about 98%. The RMSE of both methods were as good as 0.02.  相似文献   
67.
Water Resources - The present study aimed to locate the areas prone to flood spreading in order to manage surface water resources. Therefore, the information layers of slope, land capability,...  相似文献   
68.
Self-centering rocking walls offer the possibility of minimizing repair costs and downtimes, and also nullify the residual drift after seismic events, thanks to their self-centering properties. In this paper, the effect of axial stress ratio on the behavior of monolithic self-centering rocking walls is investigated by utilizing a developed finite element model. To verify the validity of the finite element model, results and observed damage in the model are compared with those of a full-scale wall test. The axial stress ratio is varied from 0.024 to 0.30 while keeping the other structural parameters constant. For qualitative damage evaluation, the observed damage in the model compared with expected damage states of desired performance levels. In order to evaluate the incurred damage quantitatively, the amount of crushing and damage in the wall is calculated by utilizing several ratios (crushing ratio and damage ratio). Furthermore, seismic response factors (i.e., μ, R and Cd) are calculated for different axial stress ratio values. The obtained results showed that, in order to satisfy the requirements of desired performance levels, the maximum axial stress ratio should be approximately within the range of 0.10–0.15. In addition, the maximum overall damage ratio and crushing ratio are suggested to be less than 5%. For axial stress ratio higher than 0.15, the flag-shaped pattern of hysteresis curves completely disappeared and the variation of displacement ductility is less sensitive to axial stress ratio. Considering the maximum axial stress ratio limited to 0.150, values of 4 and 3.5 are conservatively proposed as a period-independent response modification factor and displacement modification factor of the investigated structural wall, respectively.  相似文献   
69.
This paper presents a step-by-step procedure using the three-dimensional boundary element approach to study the behavior of semi-circular canyons under seismic shear waves. The boundary element code TDASC allows utilization for various canyon geometries, evaluation of concurrent seismic waves and calculation of the ground motions on canyons due to an excitation at any arbitrary point of the incident field. Considering the widening ratio of the canyon(including prismatic, semi-prismatic and non-prismatic canyons), wave characteristics(wavelength, dimensionless period, direction) and maximum amplification pattern, the solution was applied to carry out a series of parametric studies. It was shown that canyon form can significantly affect the displacement amplification, especially at the points located on its edges. By increasing the wave dimensionless frequency(η 1), the amplification pattern becomes more complex. On the basis of the results from a variety of considered cases, a new expression has been presented for the limiting wavelength beyond which the widening of the canyon will not have a major effect on the displacement amplification. To verify the reliability of the proposed approach, the obtained results, expressed in terms of displacement amplitude, were compared with those from the available published literature and a reasonably good agreement was observed.  相似文献   
70.
In this paper, a new methodology is developed for optimization of water and waste load allocation in reservoir–river systems considering the existing uncertainties in reservoir inflow, waste loads and water demands. A stochastic dynamic programming (SDP) model is used to optimize reservoir operation considering the inflow uncertainty, and another model called PSO-SA is developed and linked with the SDP model for optimizing water and waste load allocation in downstream river. In the PSO-SA model, a particle swarm optimization technique with a dynamic penalty function for handling the constraints is used to optimize water and waste load allocation policies. Also, a simulated annealing technique is utilized for determining the upper and lower bounds of constraints and objective function considering the existing uncertainties. As the proposed water and waste load allocation model has a considerable run-time, some powerful soft computing techniques, namely, Regression tree Induction (named M5P), fuzzy K-nearest neighbor, Bayesian network, support vector regression and an adaptive neuro-fuzzy inference system, are trained and validated using the results of the proposed methodology to develop real-time water and waste load allocation rules. To examine the efficiency and applicability of the methodology, it is applied to the Dez reservoir–river system in the south-western part of Iran.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号