The University of Nairobi is currently the only University in Kenya which offers degree level courses in the earth sciences. The Department was founded in 1961, became part of an autonomous University in 1970, awarded its first degrees in 1972 and awarded its first Geology degrees in 1978. The Department currently offers a four-year B.Sc. course - delivered as part of a course unit system - and an M.Sc. programme in Geology. Students are admitted to the University after eight years of primary and four years of secondary schooling. Graduates find employment either in government departments or in the private sector. The Department currently has 15 academic staff who are involved in a variety of research projects. Currently, there are collaborative links with Universities in Germany, Sweden and South Africa. 相似文献
The peculiarities of fluid inclusions; the O and C isotope composition of host rocks, vein minerals, and inclusions; and the S and Pb isotope composition of sulfides allowed us to distinguish two groups of fluids with a similar temperature, salinity, and source of the aqueous part produced upon metagenesis and mobilized during collisional events. Quartz-A precipitates from the CO2–H2O hydrocarbonate–Na fluid with a salinity of 7–10 wt % eq. NaCl at a depth of ~6 km (290–340°C, 1550 bar). Regeneration of quartz (quartz-C), precipitation of quartz-B, and quartz-AB with carbonate and chlorite occurred at a depth from 3.5 to 1.5 km (250–380°C, 1250–900–350 bar) from CO2–CH4–N hydrous sulfate–hydrocarbonate Na–Mg fluids with Cl–, Ca, and K and a salinity of 5–10 wt % eq. NaCl, and a wide variety of impurities. The localization of veins in sinistral shear dislocations and strong heterogeneity in the P–T conditions allow us to explain the formation of fluid-2 by the postcollisional events. 相似文献
The frequent appearance of some hydro-environmental hazard features, such as waterlogging and soil salinization along the susceptible zones at Northwest Sinai area (NWSA), has put serious challenges and obstacles for a correct and efficient land use planning of this region, for several decades. Although previous studies have shown that the whole region of Northern Sinai is greatly affected by the tectonic movements associated with the Syrian Arc folding system (SAS), NWSA is barren of any obvious surficial structures. The current work aims to investigate the effect of subsurface tectonic features on the hydrogeologic regime of NWSA.Hydrogeological and remote sensing data were integrated with ground geophysical gravity and magnetic measurements, using the geographic information system. Data integration asserts the role played by buried tectonic features not only in governing the landforms of the upper water-bearing quaternary formations but also in controlling their flow regime.Two major subsurface structures were identified through interpreting the geophysical measurements. A buried dome-like structure, dominating the central part of the mapped area, coincides with the radial flow pattern observed on the water table map. At the southwestern corner of the study area, an elevated groundwater level, caused by continuous groundwater accumulation at the discharge boundary, is superimposing a subsurface block-faulted depression. The waterlogging features (saturation of the soil by groundwater and inundation of local depressions due to rising of water table) dominating the discharge lowlands of NWSA support the conclusion that a buried block-faulted structure exerts a strong influence on the thickness and groundwater flow regime of the shallow quaternary aquifer. 相似文献
Electrical conductivity structure of the Earth’s deep interior has been successfully mapped out down to approximately 1500 km around the geomagnetic dip equatorial regions of Africa using solar quiet-day ionospheric currents. Spherical harmonic analysis (SHA) was employed in separating the internal and external field contributions to the solar quiet variations. Transfer function was used for each of the external and internal pairs to compute the conductivity-depth profile for the region. Calculated average electrical conductivity values were evidently higher than obtained in other parts of the world farther away from the geomagnetic equator. Sq current vortex foci are observed very close to the geomagnetic equator. Depth of penetration was greatly enhanced. Stations on latitudes less than 1° from the geomagnetic equator show higher electrical conductivity when compared with that situated more than 4° away from it at various corresponding depths. Evidence of discontinuities in the earth layers were also noted at some depths. Highly conductive layers were delineated around 400 km depth and beyond 1200 km. 相似文献
The Neoproterozoic geotectonic triad of the Brasiliano Orogen is reconstructed in southern Brazil from studies focused on the Porongos fold and thrust belt. We integrate field geology with isotopic studies of zircon U–Pb SHRIMP and Lu–Hf–O laser determinations in seven metasedimentary and three metavolcanic rock samples. The results indicate that the Porongos palaeo-basin was derived from mixed sources (3200–550 Ma), with major contributions from Rhyacian (2170 Ma) and Ediacaran (608 Ma) sources. Minor contributions from Archaean to Tonian sources are also registered. The maximum depositional age of the Porongos palaeo-basin is established by the age range of 650–550 Ma with TDM model ages between 2.5 and 1.3 Ga. The reworked signature (εHf values = ?34 to ?4) and the characteristic crustal magma reservoirs (δ18O ≥5.3 ‰) indicate that these sediments are equivalent to Neoproterozoic granites of the Dom Feliciano Belt. The episodic depositional history started in the Cryogenian (650 Ma) and lasted until the Ediacaran (most likely 570 Ma). A magmatic event of Tonian age is recorded in rhyodacite samples interleaved with the metasedimentary rocks and dated at 773, 801, and 809 Ma. The crustal evolution of the Sul-Riograndense Shield included mountain building, folding and thrusting and flexural subsidence in the foreland. An orogenic triad is revealed as the Pelotas Batholith, the Porongos fold and thrust belt and the Camaquã Basin, all part of the Dom Feliciano Belt. 相似文献
Basic regularities of secondary processes in reservoir rocks of the Yarakta Horizon are described with rocks in the Yarakta
field as example. To achieve the formulated goal, we elucidated rock types in the studied section, its structure and distribution
of reservoir rocks, as well as types of secondary alterations and their influence on filtration-capacity properties. The studies
revealed that reservoir rocks of the Yarakta Horizon were formed on an alluvial-deltaic plain on the southeastern slope of
the Nepa-Botuoba anteclise. The pore space of reservoir rocks is determined by conditions of their formation and peculiarities
of secondary alterations. Maximal filtration-capacity values are characteristic of gritstones, as well as coarse-grained and
inequigranular sandstones developed in the lower and middle parts of the Yarakta Horizon. The intergranular space of reservoir
rocks in the lower part of the reservoir is substantially “healed” by secondary processes (regeneration, dolomitization, sulfatization,
and salinization), probably, due to the gravitational seepage of stratal fluids, mineralization of which increased with time. 相似文献
The potential of marble dust as a stabilizing additive to red tropical soils was evaluated. The evaluation involved the determination of the geotechnical properties of three different red tropical soils in their natural state as well as when mixed with varying proportions of marble dust. The parameters tested included the particle size distribution, specific gravity, Atterberg limits, the standard compaction characteristics, the compressive strength and the California bearing ratio (CBR). The strength tests were repeated after normal 28 day curing of the treated samples and also after accelerated 24 h curing at temperatures of 40°C, 60°C and 80°C.
Results showed that the geotechnical parameters of red tropical soils are improved substantially by the addition of marble dust; plasticity was reduced by 20 to 33% and strength and CBR increased by 30 to 46% and 27 to 55% respectively. The highest strength and CBR values were achieved at 8% marble dust. Results also showed that normal 28 day curing improved the strength of the marble dust-treated soil with over 80% strength gain achieved after 7 to 10 days of normal curing. Higher strength development was realised following accelerated 24 h curing at 60°C.
Although these results imply marked improvement in the geotechnical parameters of red tropical soils, the higher strength developed is not enough for the improved soil to be used as a base material in the construction of heavily trafficked flexible pavements. The improved material may, however, be successfully used as base material for lightly trafficked roads and as a sub-base material for heavily trafficked roads. 相似文献
Organic matter is an important factor that cannot be neglected when considering global carbon cycle. New data including organic matter geochemistry at the small watershed scale are needed to elaborate more constrained carbon cycle and climatic models. The objectives are to estimate the DOC and DIC yields exported from small tropical watersheds and to give strong constraints on the carbon hydrodynamic of these systems. To answer these questions, we have studied the geochemistry of eleven small watersheds around Basse-Terre volcanic Island in the French West Indies during different hydrological regimes from 2006 to 2008 (i.e. low water level versus floods). We propose a complete set of carbon measurements, including DOC and DIC concentrations, δ13C data, and less commonly, some spectroscopic indicators of the nature of organic matter. The DOC/DIC ratio varies between 0.07 and 0.30 in low water level and between 0.25 and 1.97 during floods, indicating that organic matter is mainly exported during flood events. On the light of the isotopic composition of DOC, ranging from ? 32.8 to ? 26.2‰ during low water level and from ? 30.1 to ? 27.2‰ during floods, we demonstrate that export of organic carbon is mainly controlled by perennial saprolite groundwaters, except for flood events during which rivers are also strongly influenced by soil erosion. The mean annual yields ranged from 2.5 to 5.7 t km? 2 year? 1 for the DOC and from 4.8 to 19.6 t km? 2 year? 1 for the DIC and exhibit a non-linear relationship with slopes of watersheds. The flash floods explain around 60% of the annual DOC flux and between 25 and 45% of the DIC flux, highlighting the important role of these extreme meteorological events on global carbon export in small tropical volcanic islands. From a carbon mass balance point of view the exports of dissolved carbon from small volcanic islands are important and should be included in global organic carbon budgets. 相似文献