首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   1篇
大气科学   1篇
地球物理   6篇
地质学   2篇
海洋学   11篇
自然地理   1篇
  2018年   2篇
  2016年   2篇
  2015年   2篇
  2014年   3篇
  2013年   1篇
  2011年   3篇
  2010年   2篇
  2009年   1篇
  2008年   2篇
  2001年   1篇
  1996年   1篇
  1991年   1篇
排序方式: 共有21条查询结果,搜索用时 296 毫秒
11.
The formation of beach megacusps along the shoreline of southern Monterey Bay, CA, is investigated using time-averaged video and simulated with XBeach, a recently developed coastal sediment transport model. Investigations focus on the hydrodynamic role played by the bay's ever-present rip channels. A review of four years of video and wave data from Sand City, CA, indicates that megacusps most often form shoreward of rip channels under larger waves (significant wave height (Hs) = 1.5–2.0 m). However, they also occasionally appear shoreward of shoals when waves are smaller (Hs ~ 1 m) and the mean water level is higher on the beach. After calibration to the Sand City site, XBeach is shown to hindcast measured shoreline change moderately well (skill = 0.41) but to overpredict the erosion of the swash region and beach face. Simulations with small to moderate waves (Hs = 0.5–1.2 m) suggest, similar to field data, that megacusps will form shoreward of either rip channels or shoals, depending on mean daily water level and pre-existing beach shape. A frequency-based analysis of sediment transport forcing is performed, decomposing transport processes to the mean, infragravity, and very-low-frequency (VLF) contributions for two highlighted cases. Results indicate that the mean flow plays the dominant role in both types of megacusp formation, but that VLF oscillations in sediment concentration and advective flow are also significant.  相似文献   
12.
Evaluation of swimmer-based rip current escape strategies   总被引:2,自引:1,他引:1  
Rip currents are the primary hazard on surf beaches, and early studies described them as fast, shore-normal flows that extended seaward of the surf zone. Based on this traditional view, commonly promoted safety advice was to escape a rip current by swimming parallel to the beach. However, recent studies have shown dominant rip current re-circulation within the surf zone and have endorsed floating as an appropriate escape strategy. Here, a first quantitative assessment of the efficacy of various rip current escape strategies, with a focus on the underlying physical processes, is presented. A field study was conducted at Shelly Beach, NSW, Australia, measuring three rip currents (two open beaches, one topographic) over 3 days in varying wave conditions. Floating was found to be a longer duration, more variable escape strategy ( $ \overline{t} $  = 3.8 min, σ = 2.4 min), than swimming parallel ( $ \overline{t} $  = 2.2 min, σ = 1.0 min). Neither of the scenarios is 100 % foolproof, and both fail in some scenarios, making simplified safety recommendations difficult. Swim parallel failures are related to swimming against the alongshore current of the rip circulation. Float failures related to surf zone exits, with the highest exit rate occurring in the topographic rip. Float failures also occurred due to multiple re-circulations without the person attaining safe footing on the bar. The variable spatial and temporal behaviour of rip currents suggests that a single escape strategy safety message is inappropriate. Instead, a combined approach and scenario-specific safety advice should be considered by beach safety practitioners to promote to the public.  相似文献   
13.
Global climate change is a qualitatively distinct, and very significant, addition to the spectrum of environmental health hazards encountered by humankind. Historically, environmental health concerns have focused on toxicological or microbiological risks to health from local exposures. However, the scale of environmental health hazards is today increasing; indeed, the burgeoning human impact on the environment has begun to alter global biophysical systems (such as the climate system). As a consequence, a range of larger-scale environmental hazards to human population health has emerged. This includes the health risks posed by climate change, stratospheric ozone depletion, loss of biodiversity, stresses on terrestrial and ocean food-producing systems, changes in hydrological systems and the supplies of freshwater, and the global spread of persistent organic pollutants. Appreciation of this scale and type of influence on human health entails an ecological perspective — a perspective that recognises that the foundations of long-term good health in populations reside in the continued stability and functioning of the biosphere's "life-supporting" ecological and physical systems. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   
14.
Coastal urban environments have high plastic pollution levels, and hence interactions between plastic debris and marine life are frequent. We report on plastic ingestion by mullet Mugil cephalus in Durban Harbour, KwaZulu-Natal, South Africa. Of 70 mullet (13.0–19.5?cm total length), 73% had plastic particles in their guts, with a mean of 3.8 particles per fish (SD 4.7). Plastic ingestion showed no relation to digestive tract content or fish length. White and clear plastic fibres were ingested most commonly. This urban population of M. cephalus had a higher incidence of plastic ingestion than has been reported in studies on fish from other coastal areas or the oceanic environment.  相似文献   
15.
Four popular, recreational beaches in Miami, FL are Hobie Beach, Virginia Key Beach, Crandon Park Beach, and Bill Baggs Cape Florida State Park. While all of the beaches are within a few miles of each other in Biscayne Bay, they have greatly differing water qualities, as determined by the testing for fecal indicator bacteria performed by the Florida Department of Health. Using the geodesic theory of transport barriers, we identify Lagrangian Coherent Structures (LCSs) in each area. We show how these material curves, which shape circulation and mixing patterns, can be used to explain the incongruous states of the water at beaches that should be comparable. The LCSs are computed using a hydrodynamic model and verified through field experimentation at each beach.  相似文献   
16.
Modelling storm impacts on beaches, dunes and barrier islands   总被引:10,自引:0,他引:10  
A new nearshore numerical model approach to assess the natural coastal response during time-varying storm and hurricane conditions, including dune erosion, overwash and breaching, is validated with a series of analytical, laboratory and field test cases. Innovations include a non-stationary wave driver with directional spreading to account for wave-group generated surf and swash motions and an avalanching mechanism providing a smooth and robust solution for slumping of sand during dune erosion. The model performs well in different situations including dune erosion, overwash and breaching with specific emphasis on swash dynamics, avalanching and 2DH effects; these situations are all modelled using a standard set of parameter settings. The results show the importance of infragravity waves in extending the reach of the resolved processes to the dune front. The simple approach to account for slumping of the dune face by avalanching makes the model easily applicable in two dimensions and applying the same settings good results are obtained both for dune erosion and breaching.  相似文献   
17.
A 2DH numerical, model which is capable of computing nearshore circulation and morphodynamics, including dune erosion, breaching and overwash, is used to simulate overwash caused by Hurricane Ivan (2004) on a barrier island. The model is forced using parametric wave and surge time series based on field data and large-scale numerical model results. The model predicted beach face and dune erosion reasonably well as well as the development of washover fans. Furthermore, the model demonstrated considerable quantitative skill (upwards of 66% of variance explained, maximum bias − 0.21 m) in hindcasting the post-storm shape and elevation of the subaerial barrier island when a sheet flow sediment transport limiter was applied. The prediction skill ranged between 0.66 and 0.77 in a series of sensitivity tests in which several hydraulic forcing parameters were varied. The sensitivity studies showed that the variations in the incident wave height and wave period affected the entire simulated island morphology while variations in the surge level gradient between the ocean and back barrier bay affected the amount of deposition on the back barrier and in the back barrier bay. The model sensitivity to the sheet flow sediment transport limiter, which served as a proxy for unknown factors controlling the resistance to erosion, was significantly greater than the sensitivity to the hydraulic forcing parameters. If no limiter was applied the simulated morphological response of the barrier island was an order of magnitude greater than the measured morphological response.  相似文献   
18.
Analysis of dune erosion processes in large-scale flume experiments   总被引:1,自引:0,他引:1  
Large-scale physical model tests were conducted with different wave periods to examine the physical processes driving dune erosion. The model tests have been carried out in a flume (2DV) with a sandy dune exposed to extreme surge and wave conditions [Van Gent, M.R.A., Van Thiel de Vries, J.S.M., Coeveld, E.M., De Vroeg, J.H. and Van de Graaff, J., 2008. Large-scale dune erosion tests to study the effect of wave periods. Coastal Engineering. doi:10.1016/j.coastaleng.2008.04.003.]. Detailed measurements in time and space of water pressure, flow velocities and sediment concentrations were performed in the near shore area. The data revealed that both short- and long waves are important to inner surf hydrodynamics. Depth averaged flows are directed offshore and increase towards the shore line. The corresponding mean sediment concentrations rise sharply towards the dune face (up to 50 g/l near the bed). The strong increase in the mean sediment concentration towards the dune face correlates well with the maximum wave surface slope which in turn is coupled to both the pressure gradient and the near-bed wave-breaking induced turbulence. Analysis shows that the pressure gradient is only partially coupled to the flow acceleration suggesting that the latter cannot always be used as a proxy for the first. Weak correlation is obtained with the near-bed flows related to the bed shear stress. Tests with a larger wave period resulted in a larger dune erosion volume. During these tests more wave energy (combined incident and infragravity waves) reached the dune face, but more importantly, this wave energy is dissipated by fewer waves resulting in more intense wave breakers and steeper wave fronts. It is therefore expected that the wave-breaking induced near-bed turbulence increases resulting in significantly higher (O(100%)) mean sediment concentrations. In addition the mean flow velocities are comparable, yielding a substantially larger offshore directed sediment transport capacity. This increase in offshore directed transport is only partially compensated by a concurrent increase in the wave related onshore transport capacity associated with intrawave processes, resulting in a net increase in the dune erosion rate.  相似文献   
19.
The accuracy of nearshore infragravity wave height model predictions has been investigated using a combination of the spectral short wave evolution model SWAN and a linear 1D SurfBeat model (IDSB). Data recorded by a wave rider located approximately 3.5 km from the coast at 18 m water depth have been used to construct the short wave frequency-directional spectra that are subsequently translated to approximately 8 m water depth with the third generation short wave model SWAN. Next the SWAN-computed frequency-directional spectra are used as input for IDSB to compute the infragravity response in the 0.01 Hz–0.05 Hz frequency range, generated by the transformation of the grouped short waves through the surf zone including bound long waves, leaky waves and edge waves at this depth. Comparison of the computed and measured infragravity waves in 8 m water depth shows an average skill of approximately 80%. Using data from a directional buoy located approximately 70 km offshore as input for the SWAN model results in an average infragravity prediction skill of 47%. This difference in skill is in a large part related to the under prediction of the short wave directional spreading by SWAN. Accounting for the spreading mismatch increases the skill to 70%. Directional analyses of the infragravity waves shows that outgoing infragravity wave heights at 8 m depth are generally over predicted during storm conditions suggesting that dissipation mechanisms in addition to bottom friction such as non-linear energy transfer and long wave breaking may be important. Provided that the infragravity wave reflection at the beach is close to unity and tidal water level modulations are modest, a relatively small computational effort allows for the generation of long-term infragravity data sets at intermediate water depths. These data can subsequently be analyzed to establish infragravity wave height design criteria for engineering facilities exposed to the open ocean, such as nearshore tanker offloading terminals at coastal locations.  相似文献   
20.
Enterococci are used to evaluate the safety of beach waters and studies have identified beach sands as a source of these bacteria. In order to study and quantify the release of microbes from beach sediments, flow column systems were built to evaluate flow of pore water out of beach sediments. Results show a peak in enterococci (average of 10% of the total microbes in core) released from the sand core within one pore water volume followed by a marked decline to below detection. These results indicate that few enterococci are easily removed and that factors other than simple pore water flow control the release of the majority of enterococci within beach sediments. A significantly larger quantity and release of enterococci were observed in cores collected after a significant rain event suggesting the influx of fresh water can alter the release pattern as compared to cores with no antecedent rainfall.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号