首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   275篇
  免费   16篇
  国内免费   7篇
测绘学   1篇
大气科学   20篇
地球物理   63篇
地质学   97篇
海洋学   36篇
天文学   43篇
综合类   5篇
自然地理   33篇
  2024年   2篇
  2021年   3篇
  2020年   6篇
  2019年   4篇
  2018年   7篇
  2017年   7篇
  2016年   13篇
  2015年   9篇
  2014年   4篇
  2013年   12篇
  2012年   6篇
  2011年   13篇
  2010年   14篇
  2009年   11篇
  2008年   8篇
  2007年   10篇
  2006年   14篇
  2005年   9篇
  2004年   10篇
  2003年   9篇
  2002年   9篇
  2001年   7篇
  2000年   4篇
  1999年   4篇
  1998年   4篇
  1997年   3篇
  1995年   4篇
  1994年   8篇
  1993年   3篇
  1991年   4篇
  1990年   4篇
  1989年   3篇
  1988年   5篇
  1987年   2篇
  1985年   3篇
  1984年   8篇
  1982年   5篇
  1981年   2篇
  1980年   5篇
  1979年   5篇
  1978年   3篇
  1977年   5篇
  1975年   3篇
  1974年   1篇
  1973年   4篇
  1972年   4篇
  1971年   1篇
  1970年   5篇
  1958年   1篇
  1925年   2篇
排序方式: 共有298条查询结果,搜索用时 187 毫秒
21.
Sediments exposed at Epiguruk, a large cutbank on the Kobuk River about 170 km inland from Kotzebue Sound, record multiple episodes of glacial-age alluviation followed by interstadial downcutting and formation of paleosols. Vertebrate remains from Epiguruk include mammoth, bison, caribou, an equid, a canid, arctic ground squirrel, lemmings, and voles. Radiocarbon ages of bone validated by concordant ages of peat and wood span the interval between about 37,000 and 14,000 yr B.P. The late Pleistocene pollen record is dominated by Cyperaceae, with Artemisia, Salix, Betula, and Gramineae also generally abundant. The fossil record from Epiguruk indicates that the Kobuk River valley supported tundra vegetation with abundant riparian willows during middle and late Wisconsin time. Large herbivores were present during the height of late Wisconsin glaciation as well as during its waning stage and the preceding interstadial interval. The Kobuk River valley would have been a favorable refugium for plants, animals, and possibly humans throughout the last glaciation.  相似文献   
22.
An assemblage of micromammals, recovered from the Holocene levels of a rockshelter at 2400 m in the montane forest of the Mau Escarpment, were examined with the goal of testing and contributing to prior reconstructions of paleoenvironments in the Central Rift Valley of Kenya. Species representation in the assemblage is consistent with a drying of the Rift Valley lakes in the middle Holocene and suggests a decrease in forest accompanied by expanding grasslands near the site. Changes in the abundance of grassland species suggests an increase in the frequency of fires, probably the result of pastoral burning. The body size of the root rat (Tachyoryctes splendens) decreases from the early Holocene to the middle Holocene, and this may indicate increasing aridity or increasing temperature. We compare measures of species diversity (number of taxa, species richness, and the Shannon diversity index) for both micromammals and macromammals since species diversity may change with paleoenvironmental change. The macromammals show no changes in species diversity that are assignable to paleoenvironmental change, while the micromammals show a trend toward decreasing diversity from the early to middle Holocene, and then show an increase in diversity during the peak of the middle Holocene dry phase, though sample size effects may be confounding the patterning.  相似文献   
23.
24.
25.
Magmatic gas scrubbing: implications for volcano monitoring   总被引:1,自引:0,他引:1  
Despite the abundance of SO2(g) in magmatic gases, precursory increases in magmatic SO2(g) are not always observed prior to volcanic eruption, probably because many terrestrial volcanoes contain abundant groundwater or surface water that scrubs magmatic gases until a dry pathway to the atmosphere is established. To better understand scrubbing and its implications for volcano monitoring, we model thermochemically the reaction of magmatic gases with water. First, we inject a 915°C magmatic gas from Merapi volcano into 25°C air-saturated water (ASW) over a wide range of gas/water mass ratios from 0.0002 to 100 and at a total pressure of 0.1 MPa. Then we model closed-system cooling of the magmatic gas, magmatic gas-ASW mixing at 5.0 MPa, runs with varied temperature and composition of the ASW, a case with a wide range of magmatic–gas compositions, and a reaction of a magmatic gas–ASW mixture with rock. The modeling predicts gas and water compositions, and, in one case, alteration assemblages for a wide range of scrubbing conditions; these results can be compared directly with samples from degassing volcanoes. The modeling suggests that CO2(g) is the main species to monitor when scrubbing exists; another candidate is H2S(g), but it can be affected by reactions with aqueous ferrous iron. In contrast, scrubbing by water will prevent significant SO2(g) and most HCl(g) emissions until dry pathways are established, except for moderate HCl(g) degassing from pH<0.5 hydrothermal waters. Furthermore, it appears that scrubbing will prevent much, if any, SO2(g) degassing from long-resident boiling hydrothermal systems. Several processes can also decrease or increase H2(g) emissions during scrubbing making H2(g) a poor choice to detect changes in magma degassing.We applied the model results to interpret field observations and emission rate data from four eruptions: (1) Crater Peak on Mount Spurr (1992) where, except for a short post-eruptive period, scrubbing appears to have drastically diminished pre-, inter-, and post-eruptive SO2(g) emissions, but had much less impact on CO2(g) emissions. (2) Mount St. Helens where scrubbing of SO2(g) was important prior to and three weeks after the 18 May 1980 eruption. Scrubbing was also active during a period of unrest in the summer of 1998. (3) Mount Pinatubo where early drying out prevented SO2(g) scrubbing before the climactic 15 June 1991 eruption. (4) The ongoing eruption at Popocatépetl in an arid region of Mexico where there is little evidence of scrubbing.In most eruptive cycles, the impact of scrubbing will be greater during pre- and post-eruptive periods than during the main eruptive and intense passive degassing stages. Therefore, we recommend monitoring the following gases: CO2(g) and H2S(g) in precursory stages; CO2(g), H2S(g), SO2(g), HCl(g), and HF(g) in eruptive and intense passive degassing stages; and CO2(g) and H2S(g) again in the declining stages. CO2(g) is clearly the main candidate for early emission rate monitoring, although significant early increases in the intensity and geographic distribution of H2S(g) emissions should be taken as an important sign of volcanic unrest and a potential precursor. Owing to the difficulty of extracting SO2(g) from hydrothermal waters, the emergence of >100 t/d (tons per day) of SO2(g) in addition to CO2(g) and H2S(g) should be taken as a criterion of magma intrusion. Finally, the modeling suggests that the interpretation of gas-ratio data requires a case-by-case evaluation since ratio changes can often be produced by several mechanisms; nevertheless, several gas ratios may provide useful indices for monitoring the drying out of gas pathways.  相似文献   
26.
The new process of automatic determination of seismic velocities by well to well measurements (Bois et al., 1971, Geophysical Prospecting 19, 42-73) gives the possibility to increase the knowledge of oil reservoirs, by detecting large inhomogeneities between wells. It can also give useful informations on the mechanical properties of rocks in mining exploitation and civil engineering, by gallery to gallery measurements. An application of the method is given to the search for the proper location of an underground hydroelectric power plant, where the problem was to investigate the rock properties in a horizontal plane between two exploration galleries.  相似文献   
27.
We observe G117-B15A, the most precise optical clock known, to measure the rate of change of the main pulsation period of this blue-edge DAV white dwarf. Even though the obtained value is only within 1 sigma, P&d2;=&parl0;2.3+/-1.4&parr0;x10-15 s s-1, it is already constraining the evolutionary timescale of this cooling white dwarf star.  相似文献   
28.
Interactions between surface and groundwater are a key component of the hydrologic budget on the watershed scale. Models that honor these interactions are commonly based on the conductance concept that presumes a distinct interface at the land surface, separating the surface from the subsurface domain. These types of models link the subsurface and surface domains via an exchange flux that depends upon the magnitude and direction of the hydraulic gradient across the interface and a proportionality constant (a measure of the hydraulic connectivity). Because experimental evidence of such a distinct interface is often lacking in field systems, there is a need for a more general coupled modeling approach.  相似文献   
29.
30.
Modern sediments of Mono Lake show marked variation in lipid composition with depositional environment. Constituents derived from the drainage basin, characterized by high molecular weight alkane hydrocarbons (C25–C31), and the steroids β-sitosterol and brassicasterol, predominate in near-shore environments. In the deepest part of the lake, sediments exhibit a combination of externally-derived constituents, and lipids derived from the lake biota; the latter characterized by low molecular-weight alkanes and alkenes (C15–C17), phytane, and the steroids ergost-7-en-3β-ol and 24-ethylcholest-7-en-3-β-ol. Steranes, 4-methylsteranes, and the C18 and C19 isoprenoids appear to be forming in the intensely reducing bottom sediments at the present time.The compositions of samples from the Pleistocene succession of Mono Basin suggest that sample-to-sample variation within the same stratum is negligible so long as unweathered samples from the same depositional environment are compared. Sediments having equivalent lithologies may or may not have similar compositions, but sediments having similar fossil contents do show similar lipid compositions. Subaerial weathering of sediments causes a marked decrease in the amount of extractable organic material, as well as distinct changes in its hydrocarbon composition. Specifically, weathered sediments exhibit a decrease in relative content of low molecular weight hydrocarbons and a relative increase in nC22.Organic composition of sediments from the Pleistocene stratigraphie column cannot be correlated with depth of burial. Compositional changes with stratigraphie position are probably related to paleo-ecological factors such as population or productivity rather than depth of burial. Lithology and organic composition provide mutually-corroborating evidence regarding glacial advances in the adjacent Sierra Nevada Mountains. During glaciations, the lake sediments are rich in sandstones, and the organic composition shows a predominance of externally-derived debris, with no evidence for contributions from the lake biota.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号