首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   296篇
  免费   26篇
  国内免费   2篇
测绘学   8篇
大气科学   29篇
地球物理   78篇
地质学   91篇
海洋学   26篇
天文学   76篇
自然地理   16篇
  2023年   2篇
  2022年   2篇
  2021年   2篇
  2020年   6篇
  2019年   7篇
  2018年   20篇
  2017年   27篇
  2016年   12篇
  2015年   8篇
  2014年   13篇
  2013年   14篇
  2012年   17篇
  2011年   19篇
  2010年   14篇
  2009年   23篇
  2008年   20篇
  2007年   15篇
  2006年   10篇
  2005年   10篇
  2004年   11篇
  2003年   4篇
  2002年   4篇
  2001年   6篇
  2000年   5篇
  1999年   6篇
  1998年   4篇
  1997年   4篇
  1996年   3篇
  1995年   1篇
  1994年   4篇
  1993年   3篇
  1992年   4篇
  1991年   1篇
  1990年   4篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1984年   3篇
  1982年   2篇
  1981年   2篇
  1978年   2篇
  1975年   2篇
  1974年   2篇
  1973年   1篇
  1969年   1篇
  1968年   1篇
排序方式: 共有324条查询结果,搜索用时 15 毫秒
321.
Water quality management in distribution networks is directly related to spatial distribution of chlorine boosters and its dosages. Water chlorination is essential to reduce the effects of bacterial and other microbiological contaminants. A higher dosage of chlorine generates harmful by-products in addition to changes in drinking water’s taste and odor. The optimization of chlorine dosage is necessary to decrease the microbial contaminants that affect water quality. Once the chlorine threshold is determined for microbial contaminant, it will help decision makers suggest optimal values. These decisions can rely on the estimated water quality index (WQI). WQI is an index to evaluate water quality and can be linked to adequate residual chlorine with optimal booster dosage, numbers, and locations in water distribution network (WDN). The city of Al-Khobar, Saudi Arabia’s WDN was selected to validate the application of this study. Based on geographic location, the city Al-Khobar water network was divided into five zones. The initial temporal and spatial analysis pointed out poor water quality zones. EPANET, a modeling and simulating software, was applied to evaluate the WQI. Those EPANET results were then integrated with an optimization model. The optimization model suggested new chlorine booster locations to improve water quality in the city of Al-Khobar water distribution network.  相似文献   
322.
The exceptional ability of dendrimers to coordinate metal ions yields the potential for many applications including wastewater remediation, which is the focus of this study. Here, the comparison of metal ion removal rate from simulated wastewater by generation 4 dendrimers with external hydroxyl functional groups (G4-OH) is evaluated for Ni2+, Fe2+, and Fe3+ ions. Ni2+ to amine complexation occurred more rapidly than Fe3+, which was more rapid than Fe2+ complexation. These results indicate that both charge density and d-electron configuration are important toward the chelation rate. The impact of both factors is discussed in light of existing models in which precursor aquation rates have been proposed as a key intermediate step. Additionally, the application of the dendrimers as chelation agents is further advanced by immobilizing the dendrimer to titania and re-evaluating its chelation ability for Ni2+ removal. The dendrimer immobilization decreased the pseudo-first-order rate coefficient for Ni2+—amine complexation at a pH of 7 by a factor of 7.5. This result is significant as it suggests that mass transfer becomes important following immobilization of the dendrimer to titania.  相似文献   
323.
Observations of the early rise and propagation phases of solar eruptive prominences can provide clues about the forces acting on them through the behavior of their acceleration with height. We have analyzed such an event, observed on 13 April 2010 by SWAP on PROBA2 and EUVI on STEREO. A feature at the top of the erupting prominence was identified and tracked in images from the three spacecraft. The triangulation technique was used to derive the true direction of propagation of this feature. The reconstructed points were fitted with two mathematical models: i) a power-law polynomial function and ii) a cubic smoothing spline, in order to derive the accelerations. The first model is characterized by five degrees of freedom while the second one is characterized by ten degrees of freedom. The results show that the acceleration increases smoothly, and it is continuously increasing with height. We conclude that the prominence is not accelerated immediately by local reconnection, but rather is swept away as part of a large-scale relaxation of the coronal magnetic field.  相似文献   
324.
NASA's OSIRIS-REx spacecraft collected samples from carbonaceous near-Earth asteroid (101955) Bennu on October 20, 2020, and will deliver them to the Earth on September 24, 2023. The samples will be processed at the NASA Johnson Space Center (JSC), where most of the sample collection will be subsequently curated in a new cleanroom suite. The spacecraft collected loose regolith two ways: in a bulk sample chamber capable of holding up to 2 kg, and on industrial Velcro “contact pads” intended to collect small particles at the surface. Included in the JSC collection will be the bulk sample, the contact pads, contamination-monitoring witness plates, and supporting hardware. Planning for the curation of the samples and hardware started at the earliest phase of proposal development and continued in parallel with project development and execution. Because a major mission goal is characterization of organic compounds in the Bennu samples, extra effort was spent in the design stage to ensure a clean curation environment. Here, we describe the preparations to receive the sample, including the design, construction, outfitting, and monitoring of the cleanrooms at JSC; the planned recovery of the sample-containing capsule when it lands on Earth; and the approach to characterizing and cataloging the samples. These curation efforts will result in the distribution of pristine Bennu samples from JSC to the OSIRIS-REx science team, international partners, and the global scientific community for years to come.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号