首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   337篇
  免费   24篇
  国内免费   3篇
测绘学   13篇
大气科学   41篇
地球物理   73篇
地质学   137篇
海洋学   17篇
天文学   73篇
自然地理   10篇
  2022年   1篇
  2021年   8篇
  2020年   1篇
  2019年   2篇
  2018年   16篇
  2017年   13篇
  2016年   24篇
  2015年   9篇
  2014年   16篇
  2013年   17篇
  2012年   18篇
  2011年   25篇
  2010年   29篇
  2009年   25篇
  2008年   19篇
  2007年   22篇
  2006年   11篇
  2005年   15篇
  2004年   18篇
  2003年   13篇
  2002年   11篇
  2001年   8篇
  2000年   8篇
  1999年   3篇
  1998年   5篇
  1997年   2篇
  1996年   5篇
  1993年   5篇
  1992年   2篇
  1990年   1篇
  1989年   2篇
  1988年   4篇
  1985年   2篇
  1984年   1篇
  1978年   1篇
  1970年   1篇
  1967年   1篇
排序方式: 共有364条查询结果,搜索用时 15 毫秒
151.
A comparison of the diamond productions from Panda (Ekati Mine) and Snap Lake with those from southern Africa shows significant differences: diamonds from the Slave typically are un-resorbed octahedrals or macles, often with opaque coats, and yellow colours are very rare. Diamonds from the Kaapvaal are dominated by resorbed, dodecahedral shapes, coats are absent and yellow colours are common. The first two features suggest exposure to oxidizing fluids/melts during mantle storage and/or transport to the Earth's surface, for the Kaapvaal diamond population.

Comparing peridotitic inclusions in diamonds from the central and southern Slave (Panda, DO27 and Snap Lake kimberlites) and the Kaapvaal indicates that the diamondiferous mantle lithosphere beneath the Slave is chemically less depleted. Most notable are the almost complete absence of garnet inclusions derived from low-Ca harzburgites and a generally lower Mg-number of Slave inclusions.

Geothermobarometric calculations suggest that Slave diamonds originally formed at very similar thermal conditions as observed beneath the Kaapvaal (geothermal gradients corresponding to 40–42 mW/m2 surface heat flow), but the diamond source regions subsequently cooled by about 100–150 °C to fall on a 37–38 mW/m2 (surface heat flow) conductive geotherm, as is evidenced from touching (re-equilibrated) inclusions in diamonds, and from xenocrysts and xenoliths. In the Kaapvaal, a similar thermal evolution has previously been recognized for diamonds from the De Beers Pool kimberlites. In part very low aggregation levels of nitrogen impurities in Slave diamonds imply that cooling occurred soon after diamond formation. This may relate elevated temperatures during diamond formation to short-lived magmatic perturbations.

Generally high Cr-contents of pyrope garnets (inside and outside of diamonds) indicate that the mantle lithosphere beneath the Slave originally formed as a residue of melt extraction at relatively low pressures (within the stability field of spinelperidotites), possibly during the extraction of oceanic crust. After emplacement of this depleted, oceanic mantle lithosphere into the Slave lithosphere during a subduction event, secondary metasomatic enrichment occurred leading to strong re-enrichment of the deeper (>140 km) lithosphere. Because of the extent of this event and the occurrence of lower mantle diamonds, this may be related to an upwelling plume, but it may equally just reflect a long term evolution with lower mantle diamonds being transported upwards in the course of “normal” mantle convection.  相似文献   

152.
We study the mechanisms of glacial inception by using the Earth system model of intermediate complexity, CLIMBER-2, which encompasses dynamic modules of the atmosphere, ocean, biosphere and ice sheets. Ice-sheet dynamics are described by the three-dimensional polythermal ice-sheet model SICOPOLIS. We have performed transient experiments starting at the Eemiam interglacial, at 126 ky BP (126,000 years before present). The model runs for 26 kyr with time-dependent orbital and CO2 forcings. The model simulates a rapid expansion of the area covered by inland ice in the Northern Hemisphere, predominantly over Northern America, starting at about 117 kyr BP. During the next 7 kyr, the ice volume grows gradually in the model at a rate which corresponds to a change in sea level of 10 m per millennium. We have shown that the simulated glacial inception represents a bifurcation transition in the climate system from an interglacial to a glacial state caused by the strong snow-albedo feedback. This transition occurs when summer insolation at high latitudes of the Northern Hemisphere drops below a threshold value, which is only slightly lower than modern summer insolation. By performing long-term equilibrium runs, we find that for the present-day orbital parameters at least two different equilibrium states of the climate system exist—the glacial and the interglacial; however, for the low summer insolation corresponding to 115 kyr BP, we find only one, glacial, equilibrium state, while for the high summer insolation corresponding to 126 kyr BP only an interglacial state exists in the model.
Reinhard CalovEmail:
  相似文献   
153.
Ralf Greve  Rupali A. Mahajan 《Icarus》2005,174(2):475-485
The evolution and dynamics of the north-polar cap (residual-ice-cap/layered-deposits complex) of Mars is simulated with a thermomechanical ice-sheet model. We consider a scenario with ice-free initial conditions at 5 Ma before present due to the large obliquities which prevailed prior to this time. The north-polar cap is then built up to its present shape, driven by a parameterized climate forcing (surface temperature, surface mass balance) based on the obliquity and eccentricity history. The effects of different ice rheologies and different dust contents are investigated. It is found that the build-up scenarios require an accumulation rate of approximately 0.15-0.2 mm a−1 at present. The topography evolution is essentially independent of the ice dynamics due to the slow ice flow. Owing to the uncertainties associated with the ice rheology and the dust content, flow velocities can only be predicted within a range of two orders of magnitude. Likely present values are of the order of 0.1-1 mm a−1, and a strong variation over the climatic cycles is found. For all cases, computed basal temperatures are far below pressure melting.  相似文献   
154.
Line-of-sight velocity distributions of low-luminosity elliptical galaxies   总被引:1,自引:0,他引:1  
The shape of the line-of-sight velocity distribution (LOSVD) is measured for a sample of 14 elliptical galaxies, predominantly low-luminosity ellipticals. The sample is dominated by galaxies in the Virgo cluster but also contains ellipticals in nearby groups and low-density environments. The parametrization of the LOSVD given by Gerhard and van der Marel & Franx is adopted, which measures the asymmetrical and symmetrical deviations of the LOSVD from a Gaussian by the amplitudes h 3 and h 4 of the Gauss–Hermite series. Rotation, velocity dispersion, h 3 and h 4 are determined as a function of radius for both major and minor axes. Non-Gaussian LOSVDs are found for all galaxies along the major axes. Deviations from a Gaussian LOSVD along the minor axis are of much lower amplitude if present at all. Central decreases in velocity dispersion are found for three galaxies. Two galaxies have kinematically decoupled cores: NGC 4458 and the well-known case of NGC 3608.  相似文献   
155.
Analytical Lagrangian equations capable of predicting concentration profiles from known source distributions offer the opportunity to calculate source/sink distributions through inverted forms of these equations. Inverse analytical Lagrangian equations provide a practical means of estimating source profiles using concentration and turbulence measurements. Uncertainty concerning estimates of the essentially immeasurable Lagrangian length scale ( ${\mathcal{L}}$ ), a key input, impedes the operational practicality of this method. The present study evaluates ${\mathcal{L}}$ within a corn canopy by using field measurements to constrain an analytical Lagrangian equation. Measurements of net CO2 flux, soil-to-atmosphere CO2 flux, and in-canopy profiles of CO2 concentration provided the information required to solve for ${\mathcal{L}}$ in a global optimization algorithm for 30-min time intervals. For days when the canopy was a strong CO2 sink, the optimization frequently located ${\mathcal{L}}$ profiles that follow a convex shape. A constrained optimization then fit the profile shape to a smooth sigmoidal equation. Inputting the optimized ${\mathcal{L}}$ profiles in the forward and inverse Lagrangian equations leads to strong correlations between measured and calculated concentrations and fluxes. Coefficients of the sigmoidal equation were specific to each 30-min period and did not scale with any measured variable. Plausible looking ${\mathcal{L}}$ profiles were associated with negative bulk Richardson number values. Once the canopy senesced, a simple eddy diffusivity profile sufficed to relate concentrations and sources in the analytical Lagrangian equations.  相似文献   
156.
The complex impact structure El'gygytgyn (age 3.6 Ma, diameter 18 km) in northeastern Russia was formed in ~88 Ma old volcanic target rocks of the Ochotsk‐Chukotsky Volcanic Belt (OCVB). In 2009, El'gygytgyn was the target of a drilling project of the International Continental Scientific Drilling Program (ICDP), and in summer 2011 it was investigated further by a Russian–German expedition. Drill core material and surface samples, including volcanic target rocks and impactites, have been investigated by various geochemical techniques in order to improve the record of trace element characteristics for these lithologies and to attempt to detect and constrain a possible meteoritic component. The bedrock units of the ICDP drill core reflect the felsic volcanics that are predominant in the crater vicinity. The overlying suevites comprise a mixture of all currently known target lithologies, dominated by felsic rocks but lacking a discernable meteoritic component based on platinum group element abundances. The reworked suevite, directly overlain by lake sediments, is not only comparatively enriched in shocked minerals and impact glass spherules, but also contains the highest concentrations of Os, Ir, Ru, and Rh compared to other El'gygytgyn impactites. This is—to a lesser extent—the result of admixture of a mafic component, but more likely the signature of a chondritic meteoritic component. However, the highly siderophile element contribution from target material akin to the mafic blocks of the ICDP drill core to the impactites remains poorly constrained.  相似文献   
157.
Relief generation in non‐glaciated regions is largely controlled by river incision into bedrock but datable fluvial terraces that allow quantifying incision rates are not always present. Here we suggest a new method to determine river incision rates in regions where low‐relief surfaces are dissected by streams. The approach consists of three steps and requires the 10Be concentrations of a stream sediment sample and a regolith sample from the low‐relief surface. In the first step, the spatial distribution of 10Be surface concentrations in the given catchment is modelled by assuming that denudation rates are controlled by the local hillslope angles. The slope–denudation rate relation for this catchment is then quantified by adjusting the relation between slope angle and denudation rate until the average 10Be concentration in the model is equal to the one measured in the stream sediment sample. In the second step, curved swath profiles are used to measure hillslope angles adjacent to the main river channel. Third, the mean slope angle derived from these swath profiles and the slope–denudation relation are used to quantify the river incision rate (assuming that the incision rate equals the denudation rate on adjacent hillslopes). We apply our approach to two study areas in southern Tibet and central Europe (Black Forest). In both regions, local 10Be denudation rates on flat parts of the incised low‐relief surface are lower than catchment‐wide denudation rates. As the latter integrate across the entire landscape, river incision rates must exceed these spatially averaged denudation rates. Our approach yields river incision rates between ~15 and ~30 m/Ma for the Tibetan study area and incision rates of ~70 to ~100 m/Ma in the Black Forest. Taking the lowering of the low‐relief surfaces into account suggests that relief in the two study areas increases at rates of 10–20 and 40–70 m/Ma, respectively. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   
158.
Observational data and simulations of the regional climate system Baltic integrated model system (BALTIMOS) were used to study precipitation in the Baltic Sea and its drainage basin with a special focus on the diurnal cycle. The study includes a general evaluation of BALTIMOS precipitation, showing that BALTIMOS has too many light rain events causing an overestimation of the total annual precipitation amount. The diurnal cycle as well as its spatial distribution was analysed. BALTIMOS captures the broad characteristics: a significant diurnal variability with an afternoon peak above land and weak variability with a nocturnal peak above sea. An algorithm to distinguish between frontal and convective precipitation was applied to examine the diurnal cycle more thoroughly. The local solar time of maximum rain in summer is about 1 to 2 h earlier in BALTIMOS than in radar observations of precipitation.  相似文献   
159.
We report the discovery of an accreting binary, RAT J1953+1859, made during the RApid Temporal Survey (RATS) on the Isaac Newton Telescope. It showed high amplitude (0.3 mag) quasi-periodic oscillations on a time-scale of ∼20 min. Further observations made using the Nordic Optical Telescope showed it to be ∼4 mag brighter than in the discovery images. These photometric observations, together with radial velocity data taken using the William Herschel Telescope, point to an orbital period of ∼90 min. These data suggest that RAT J1953+1859 is a dwarf novae of the SU UMa type. What makes RAT J1953+1859 unusual is that it is the first such system to be discovered as a result of high amplitude QPOs during quiescence. This suggests that high-cadence wide-field surveys could be another means to discover cataclysmic variables as a result of their short period variability.  相似文献   
160.
ABSTRACT

In order to determine the effects of fluid–rock interaction on nitrogen elemental and isotopic systematics in high-pressure metamorphic rocks, we investigated three different profiles representing three distinct scenarios of metasomatic overprinting. A profile from the Chinese Tianshan (ultra)high-pressure–low-temperature metamorphic belt represents a prograde, fluid-induced blueschist–eclogite transformation. This profile shows a systematic decrease in N concentrations from the host blueschist (~26 μg/g) via a blueschist–eclogite transition zone (19–23 μg/g) and an eclogitic selvage (12–16 μg/g) towards the former fluid pathway. Eclogites and blueschists show only a small variation in δ15Nair (+2.1 ± 0.3‰), but the systematic trend with distance is consistent with a batch devolatilization process. A second profile from the Tianshan represents a retrograde eclogite–blueschist transition. It shows increasing, but more scattered, N concentrations from the eclogite towards the blueschist and an unsystematic variation in δ15N values (δ15N = + 1.0 to +5.4‰). A third profile from the high-P/T metamorphic basement complex of the Southern Armorican Massif (Vendée, France) comprises a sequence from an eclogite lens via retrogressed eclogite and amphibolite into metasedimentary country rock gneisses. Metasedimentary gneisses have high N contents (14–52 μg/g) and positive δ15N values (+2.9 to +5.8‰), and N concentrations become lower away from the contact with 11–24 μg/g for the amphibolites, 10–14 μg/g for the retrogressed eclogite, and 2.1–3.6 μg/g for the pristine eclogite, which also has the lightest N isotopic compositions (δ15N = + 2.1 to +3.6‰).

Overall, geochemical correlations demonstrate that phengitic white mica is the major host of N in metamorphosed mafic rocks. During fluid-induced metamorphic overprint, both abundances and isotopic composition of N are controlled by the stability and presence of white mica. Phengite breakdown in high-P/T metamorphic rocks can liberate significant amounts of N into the fluid. Due to the sensitivity of the N isotope system to a sedimentary signature, it can be used to trace the extent of N transport during metasomatic processes. The Vendée profile demonstrates that this process occurs over several tens of metres and affects both N concentrations and N isotopic compositions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号