首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   403篇
  免费   5篇
  国内免费   5篇
测绘学   9篇
大气科学   12篇
地球物理   77篇
地质学   187篇
海洋学   27篇
天文学   82篇
综合类   2篇
自然地理   17篇
  2023年   1篇
  2021年   2篇
  2020年   2篇
  2019年   7篇
  2018年   8篇
  2017年   2篇
  2016年   11篇
  2015年   9篇
  2014年   11篇
  2013年   27篇
  2012年   17篇
  2011年   26篇
  2010年   27篇
  2009年   34篇
  2008年   26篇
  2007年   17篇
  2006年   16篇
  2005年   16篇
  2004年   20篇
  2003年   20篇
  2002年   16篇
  2001年   7篇
  2000年   7篇
  1999年   8篇
  1998年   6篇
  1997年   4篇
  1996年   6篇
  1995年   4篇
  1994年   4篇
  1993年   2篇
  1992年   1篇
  1991年   4篇
  1990年   5篇
  1989年   3篇
  1988年   3篇
  1987年   1篇
  1986年   4篇
  1985年   2篇
  1984年   3篇
  1983年   3篇
  1982年   4篇
  1981年   2篇
  1980年   5篇
  1979年   1篇
  1976年   2篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
  1970年   1篇
  1969年   2篇
排序方式: 共有413条查询结果,搜索用时 531 毫秒
171.
为系统、深入地研究中国西部盆(盆地)、山(山脉)、原(高原)的壳幔结构与深部动力学过程,2003年我们提出并领导实施了“羚羊计划”(ANTILOPE-Array Network of Tibetan International Lithospheric Observation and Probe Experiments),在青藏高原先后完成了羚羊-I(ANTILOPE-I)到羚羊-IV(ANTILOPE-IV)4条二维宽频带台阵剖面,而在青藏高原东西构造结则实施了羚羊-V和羚羊-VI两个三维宽频带台阵探测。另外,我们将前期在准噶尔盆地、天山造山带、塔里木盆地、阿尔金造山带和柴达木盆地开展的九条综合地球物理观测剖面也纳入羚羊计划的总体框架中来。 通过“羚羊计划”的实施,我们在中国西部(包括西北部的环青藏高原盆山体系以及西南部的青藏高原)取得了大量的、高质量的、综合的第一手观测数据,获得了中国西部盆、山、原精细的壳幔结构,系统地揭示了中国西部盆山原的深部地球动力学过程。主要结论总结如下:确定了准噶尔盆地基底的结构与属性,优化了盆地的基底构造格架;建立了天山造山带“层间插入削减”新的陆内造山模式,揭示了印欧碰撞在天山岩石圈缩短44%的去向以及由洋-陆俯冲到陆-陆碰撞俯冲的转换机制;揭示了塔里木盆地、阿尔金造山带和柴达木盆地的盆山接触关系;获得了塔里木盆地顺时针旋转的深部几何学、运动学和动力学证据;确定了青藏高原之下印度板块与欧亚板块的碰撞边界;发现目前的青藏高原由南部的印度板块、北部的欧亚板块和夹持于二者之间的巨型破碎区——西藏“板块”构成,首次确定了各自的岩石圈底边界;修正了高原变形的两个端员模型;建立了深部构造对地表地形的制约关系;系统地揭示了印度板块沿喜马拉雅造山带俯冲的水平距离与俯冲角度的变化规律与控制因素。 “羚羊计划”以其巨大的观测网络与综合地球物理探测技术,采用地球物理学、地质学、地球化学等不同学科相结合的分析方法,揭示了印度板块俯冲、西藏巨型破碎区发育、塔里木板块顺时针旋转、西部水汽通道提前关闭、中国西北部干旱、沙漠化提前这一深部结构、动力学过程及其对地表地形、油气资源和环境变化的制约关系,推动了青藏高原地球系统科学理论的发展。  相似文献   
172.
173.
Abstract— A team from EUROMET (a joint initiative of scientific institutions in Europe interested in meteorites) was sent for the first time to Antarctica in the 1990/91 season to undertake a systematic search for meteorites. The project was organised within the framework of the Italian Antarctic Program (Programma Nationale di Richerche in Antartide, PNRA). The search was carried out in the vicinity of Frontier Mountain (North Victoria Land) and 256 meteorite fragments were discovered, most of which were wind-blown across the blue-ice field to the NE of Frontier Mountain and finally caught in an ice depression about 5 km to the N. The larger meteorites which remained on the ice surface from which they were uncovered may have been transported down to the mountain edge where they have subsequently been destroyed or covered in debris. A search for meteorites at neighbouring Sequence Hills, where similar glaciological conditions as at Frontier Mountain exist, proved unsuccessful. At this location the surface of the blue ice in the valleys with suspected meteorite concentrations was covered by meltwater lakes.  相似文献   
174.
175.
On the basis of their textures and mineral compositions spinel-peridotite xenoliths of the Cr-diopside group (group I) from Cenozoic volcanic fields of Arabia can be classified into different subtypes. Type IA is of lherzolitic to harzburgitic composition; mineral compositions are similar to those of group I mantle xenoliths from worldwide occurrences. Type IB xenoliths have lherzolitic to wehrlitic compositions; Mg/(Mg+Fe) ratios of the clinopyroxenes (0.862–0.916) and olivines (0.872–0.914) are similar too or slightly lower than those of typical IA minerals. Texturally, type IB xenoliths are distinguished from type IA rocks by the presence of intragranular spinel, intragranular relict Cr-pargasite, and subordinate intergranular Ba-phlogopite (11.1% BaO). The hydrous minerals in type IB xenoliths are interpreted to document an earlier metasomatism 1 which did not affect type IA lithospheric mantle. Subsequent recrystallization caused the partial replacement of Cr-pargasite in type IB materials and resulted in the formation of less hydrous mineral assemblages. Some of the type IA xenoliths are characterized by secondary intergranular amphibole which must have formed recently. The absence or presence of this intergranular amphibole is used to distinguish an anhydrous subtype IA1 from a hydrous subtype IA2. Type IB xenoliths may also contain secondary intergranular amphibole (similar to the one in subtype IA2) or they contain abundant formermelt patches now consisting of glass and phenocrysts of olivine, clinopyroxene, amphibole, and spinel. The secondary intergranular amphiboles and the former melt patches, both are interpreted as results of a second metasomatism (metasomatism 2). In their trace element and isotopic characteristics, type IA1 and type IA2 clinopyroxenes do not exhibit any systematic differences. Furthermore, type IA2 clinopyroxenes are in Sr isotopic disequilibrium with intergranular amphiboles. This suggests that type IA2 clinopyroxenes were not modified during the second metasomatism 2. All type IA clinopyroxenes have low Sr contents (100 ppm); most of them show Sm/Nd ratios higher than inferred for bulk earth. In their 87Sr/86Sr and 143Nd/144Nd ratios, type IA clinopyroxenes exhibit a large spread from 0.70226–0.70376 and from 0.51375–0.51251, respectively. Highly variable Sr/Nd ratios (5.0–79.3) and variable TUR and TCHUR model age relationships require different evolutions of the respective mantle portions. Nevertheless, all but two type IA clinopyroxenes form a linear array in a Sm–Nd isochron diagram which probably can not be explained by mixing. If taken as an isochron the slope of the array corresponds to an age of around 700 Ma. The mean initial Nd of 5.8±1.7 (1) is similar to values for juvenile Pan-African (i.e. 850–650 Ma old) crust of the Arabian-Nubian shield. It is suggested that type IA lithospheric mantle and the juvenile Pan-African crust are two counterparts fractionated from a common source during the earlier stages of the Pan-African. Type IB clinopyroxenes have high Sr contents (200 ppm), variable Sr/Nd ratios (9–111) and Sm/Nd ratios generally below that inferred for bulk earth, and show a small spread in their Sr and Nd isotopic compositions (0.70299–0.70318 and 0.51285–0.51278, respectively). In a Sm–Nd isochron diagram the data points form a linear, horizontal array indicating a close-to-zero age for the earlier metasomatism 1 and suggesting a close genetic relationship to mantle processes related to the formation of the Red Sea.  相似文献   
176.
A dense (~3.34 g cm–3) garnet–sillimanite-rich metamorphic rock from the suevite breccia of the Ries impact crater was studied by scanning-electron microscopy and Raman microprobe spectroscopy. In the strongly shocked rock clast kyanite was formed from sillimanite under momentary high pressures of natural shock waves. Kyanite aggregates were found as thin (~0.3–2.0 m) seams along grain boundaries between, and fractures within, sillimanite grains. Within these seams kyanite c-axes are oriented perpendicular to original grain boundaries and fractures. In addition, larger (up to 10 m) isolated kyanite grains were rarely found within host sillimanite. Filamentary kyanite aggregates and isolated crystals typically show shrinkage cracks due to volume decrease (~10%). Locally, broad interstices between sillimanite crystals are filled with aluminosilicate glass containing a high volume fraction of sub-micrometer-sized euhedral crystals. The silica-rich glass suggests incongruent melting of sillimanite at local post-shock temperatures significantly higher than 1,300°C. The edges of adjacent sillimanite grains are thermally and chemically altered. The local generation of temperature spikes is attributed to strong shock wave interactions due to very high shock impedance contrasts.  相似文献   
177.
An undated high-pressure low-temperature tectonic mélange in the Elekda area (central Pontides, N Turkey) comprises blocks of MORB-derived lawsonite eclogite within a sheared serpentinite matrix. In their outer shells, some of the eclogite blocks contain large (up to 6 cm) tourmaline crystals. Prograde inclusions in poikiloblastic garnet from a well-preserved eclogite block are lawsonite, epidote/clinozoisite, omphacite, rutile, glaucophane, chlorite, Ba-bearing phengite, minor actinolite, winchite and quartz. In addition, glaucophane, lawsonite and rutile occur as inclusions in omphacite. These inclusion assemblages document the transition from a garnet-lawsonite-epidote-bearing blueschist to a lawsonite eclogite with the peak assemblage garnet + omphacite I + lawsonite + rutile. Peak metamorphic conditions are not well-constrained but are estimated approximately 400–430°C and >1.35 GPa, based on Fe–Mg exchange between garnet and omphacite and the coexistence of lawsonite + omphacite + rutile. During exhumation of the eclogite–serpentinite mélange in the hanging wall of a subduction system, infiltration of B-rich aqueous fluids into the rims of eclogite blocks caused retrogressive formation of abundant chlorite, titanite and albite, followed by growth of tourmaline at the expense of chlorite. At the same time, omphacite I (XJd=0.24–0.44) became unstable and partially replaced by omphacite II characterized by higher XJd (0.35–0.48), suggesting a relatively low silica activity in the infiltrating fluid. Apart from Fe-rich rims developed at the contact to chlorite, tourmaline crystals are nearly homogeneous. Their compositions correspond to Na-rich dravite, perhaps with a small amount of excess (tetrahedral) boron (~5.90 Si and 3.10 B cations per 31 anions). 11 B values range from –2.2 to +1.7. The infiltrating fluids were most probably derived from subducting altered oceanic crust and sediments.  相似文献   
178.
179.
The adiabatic lapse rate is commonly explained as being proportional to the work done on a fluid parcel as its volume changes in response to an increase in pressure. According to this explanation the adiabatic lapse rate would increase with both pressure and the fluid's compressibility, but this is not the case. Rather, the adiabatic lapse rate is proportional to the thermal expansion coefficient and is independent of the fluid's compressibility. Here we show that the adiabatic lapse rate is independent of the increase in the internal energy that a parcel experiences when it is compressed. We explain what is missing from the traditional explanation of the adiabatic lapse rate and we explore the thermodynamic cause of the adiabatic lapse rate. In particular, we seek to explain how the adiabatic lapse rate can be negative in cool fresh water.  相似文献   
180.
The Borborema Pegmatitic Province (BPP), northeastern Brazil, is historically important for tantalum mining and also famous for top-quality specimens of exotic Nb–Ta oxides and, more recently, for the production of gem quality, turquoise blue, ‘Paraíba Elbaite.’ With more than 750 registered mineralized rare-element granitic pegmatites, the BPP extends over an area of about 75 by 150 km in the eastern part of the Neoproterozoic Seridó Belt. The Late Cambrian pegmatites are mostly hosted by a sequence of Neoproterozoic cordierite–sillimanite biotite schists of the Seridó Formation and quartzites and metaconglomerates of the Equador Formation. The trace-element ratios in feldspar and micas allow to classify most pegmatites as belonging to the beryl–columbite phosphate subtype. Electron microprobe analyses (EMPA) of columbite, tapiolite, niobian–tantalian rutile, ixiolite and wodginite group minerals from 28 pegmatites in the BPP are used to evaluate the effectiveness of Nb–Ta oxide chemistry as a possible exploration tool, to trace the degree of pegmatite fractionation and to classify the pegmatites. The columbite group mineral composition allows to establish a compositional trend from manganoan ferrocolumbite to manganocolumbite and on to manganotantalite. This trend is typical of complex spodumene- and/or lepidolite-subtype pegmatites. It clearly contrasts with another trend, from ferrocolumbite through ferrotantalite to ferrowodginite and ferrotapiolite compositions, typical of pegmatites of the beryl–columbite phosphate subtype. Large scatter and anomalous trends in zoned crystals partially overlap and conceal the two main evolution patterns. This indicates that a large representative data set of heavy mineral concentrate samples, collected systematically along cross-sections, would be necessary to predict the metallogenetic potential of individual pegmatites. Other mineral species, e.g. garnets and/or tourmaline, with a more regular distribution than Nb–Ta oxides, would be more appropriate and less expensive for routine exploration purposes. The currently available Nb–Ta oxide chemistry data suggest the potential for highly fractionated Ta–Li–Cs pegmatites in the BPP, so far undiscovered, and encourages further, more detailed research.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号