首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   301篇
  免费   4篇
  国内免费   4篇
测绘学   3篇
大气科学   27篇
地球物理   26篇
地质学   186篇
海洋学   14篇
天文学   15篇
自然地理   38篇
  2015年   2篇
  2014年   2篇
  2013年   18篇
  2012年   8篇
  2011年   7篇
  2010年   4篇
  2009年   8篇
  2008年   6篇
  2007年   4篇
  2006年   7篇
  2005年   15篇
  2004年   3篇
  2003年   4篇
  2002年   10篇
  2001年   5篇
  2000年   3篇
  1999年   7篇
  1998年   8篇
  1997年   22篇
  1996年   15篇
  1995年   5篇
  1994年   11篇
  1993年   11篇
  1992年   11篇
  1991年   17篇
  1990年   8篇
  1989年   4篇
  1988年   9篇
  1987年   6篇
  1986年   3篇
  1985年   7篇
  1984年   6篇
  1982年   3篇
  1981年   4篇
  1979年   5篇
  1978年   2篇
  1977年   2篇
  1976年   5篇
  1975年   2篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1971年   4篇
  1970年   1篇
  1969年   1篇
  1968年   3篇
  1967年   6篇
  1966年   7篇
  1962年   2篇
  1933年   2篇
排序方式: 共有309条查询结果,搜索用时 781 毫秒
291.
Soft-sediment deformation features occur commonly on parts of intertidal sand bodies in Cobequid Bay, Bay of Fundy. These features are small- to intermediate-sized, slump-like bodies, 1-3 m2 in area and located on the crest and upper stoss side of ebb megaripples. External modification of these slumps indicates that they formed before complete emergence. The deformed cross-bedding within these bodies extends to a depth of 0.15-0.35 m and shows that deformation occurred during slumping and flowage of liquefied sand down the megaripple stoss side. Field evidence and calculations strongly indicate that this liquefaction results from the impact of 0.1-0.3 m high waves breaking against the megaripple lee faces. Neither rapid drawdown of the water level nor earthquake shocks are reasonable alternative explanations. Indigenous wave activity provides an attractive substitute to tectonism as an explanation of soft-sediment deformation in ancient shallow-water sediments. Slow wave-induced compaction may also account for the relative scarcity of deformation structures in shallow marine sandstones.  相似文献   
292.
293.
294.
295.
The peri‐Arabian ophiolite belt, from Cyprus in the west, eastward through Northwest Syria, Southeast Turkey, Northeast Iraq, Southwest Iran, and into Oman, marks a 3000 km‐long convergent margin that formed during a Late Cretaceous (ca 100 Ma) episode of subduction initiation on the north side of Neotethys. The Zagros ophiolites of Iran are part of this belt and are divided into Outer (OB) and Inner (IB) Ophiolitic Belts. We here report the first Nd–Hf isotopic study of this ophiolite belt, focusing on the Dehshir ophiolite (a part of IB). Our results confirm the Indian mid‐oceanic ridge basalt (MORB) mantle domain origin for the Dehshir mafic and felsic igneous rocks. All lavas have similar Hf isotopic compositions, but felsic dikes have significantly less‐radiogenic Nd isotopic compositions compared to mafic lavas. Elevated Th/Nb and Th/Yb in felsic samples accompany nonradiogenic Nd, suggesting the involvement of sediments or continental crust.  相似文献   
296.
A suite of dolerite dykes from the Ahlmannryggen region of westernDronning Maud Land (Antarctica) forms part of the much moreextensive Karoo igneous province of southern Africa. The dykecompositions include both low- and high-Ti magma types, includingpicrites and ferropicrites. New 40Ar/39Ar age determinationsfor the Ahlmannryggen intrusions indicate two ages of emplacementat 178 and 190 Ma. Four geochemical groups of dykes have beenidentified in the Ahlmannryggen region based on analyses of60 dykes. The groups are defined on the basis of whole-rockTiO2 and Zr contents, and reinforced by rare earth element (REE),87Sr/86Sr and 143Nd/144Nd isotope data. Group 1 were intrudedat 190 Ma and have low TiO2 and Zr contents and a significantArchaean crustal component, but also evidence of hydrothermalalteration. Group 2 dykes were intruded at 178 Ma; they havelow to moderate TiO2 and Zr contents and are interpreted tobe the result of mixing of melts derived from an isotopicallydepleted source with small melt fractions of an enriched lithosphericmantle source. Group 3 dyke were intruded at 190 Ma and formthe most distinct magma group; these are largely picritic withsuperficially mid-ocean ridge basalt (MORB)-like chemistry (flatREE patterns, 87Sr/86Sri 0·7035, Ndi 9). However, theyhave very high TiO2 (4 wt %) and Zr (500 ppm) contents, whichis not consistent with melting of MORB-source mantle. The Group3 magmas are inferred to be derived by partial melting of astrongly depleted mantle source in the garnet stability field.This group includes several high Mg–Fe dykes (ferropicrites),which are interpreted as high-temperature melts. Some Group3 dykes also show evidence of contamination by continental crust.Group 4 dykes are low-K picrites intruded at 178 Ma; they havevery high TiO2–Zr contents and are the most enriched magmagroup of the Karoo–Antarctic province, with ocean-islandbasalt (OIB)-like chemistry. Dykes of Group 1 and Group 3 aresub-parallel (ENE–WSW) and both groups were emplaced at190 Ma in response to the same regional stress field, whichhad changed by 178 Ma, when Group 2 and Group 4 dykes were intrudedalong a dominantly NNE–SSW strike. KEY WORDS: flood basalt; depleted mantle; enriched mantle; Ahlmannryggen; Karoo dyke  相似文献   
297.
298.
Current knowledge of flow and turbulent processes acting across the sand bed continuum is still unable to unequivocally explain the mechanism(s) by which ripples become dunes. Understanding has been improved by comparative high-resolution studies undertaken over fixed bedforms at different stages in the continuum. However, these studies both ignore the role of mobile sediment and do not examine flow structure during the actual transition from ripples to dunes. The aims of the paper are: (i) to describe flow and turbulence characteristics acting above mobile bedforms at several stages across the transition; and (ii) to compare these data with those arising from experiments over fixed ripples and dunes. Laboratory experiments are presented that examine the turbulence structure across seven distinct stages of the transition from ripples to dunes. Single-point acoustic Doppler velocimeter sampling at three flow heights above a developing mobile boundary was undertaken. Time-averaged statistics and the instantaneous quadrant record reveal distinct changes in flow structure either side of the change from ripples to dunes. Initially, shear-related, high-frequency vortex shedding dominates turbulence production. This increases until two-dimensional (2D) dunes have formed. Thereafter, turbulence intensities and Reynolds stress decline and three-dimensional dunes exhibit values found over 2D ripples. This is the result of shear layer dampening which occurs when the topographically-accelerated downstream velocity increases at a faster rate than flow depth. Activity at reattachment increases due to high velocity fluid imparting high mass and momentum transfer at the bed and/or wake flapping. Suspended sediment may also play a role in turbulence dampening and bed erosion. Ejections dominate over sweeps in terms of event frequency but not magnitude. Strong relationships between inward interactions and sweeps, and ejections and outward interactions, suggest that mass and momentum exchanges are dependent upon activity in all four quadrants. The results contradict the notion present in most physical models that larger bedforms exhibit most shear layer activity. Consequently an improved model for the ripple–dune transition is proposed.  相似文献   
299.
The Pleistocene speleothems of Sa Bassa Blanca cave, Mallorca, are excellent indicators of palaeoclimate variations, and are samples that allow evaluation of the products and processes of mixing‐zone diagenesis in an open‐water cave system. Integrated stratigraphic, petrographic and geochemical data from a horizontal core of speleothem identified two main origins for speleothem precipitates: meteoric‐marine mixing zone and meteoric‐vadose zone. Mixing‐zone precipitates formed at and just below the water–air interface of cave pools during interglacial times, when the cave was flooded as a result of highstand sea‐level. Mixing‐zone precipitates include bladed and dendritic high‐Mg calcite, microporous‐bladed calcite with variable Mg content, and acicular aragonite; their presence suggests that calcium‐carbonate cementation is significant in the studied mixing‐zone system. Fluid inclusion salinities, δ13C and δ18O compositions of the mixing‐zone precipitates suggest that mixing ratio was not the primary control on whether precipitation or dissolution occurred, rather, the proximity to the water table and degassing of CO2 at the interface, were the major controls on precipitation. Thus, simple two‐end‐member mixing models may apply only in mixing zones well below the water table. Meteoric‐vadose speleothems include calcite and high‐Mg calcite with columnar and bladed morphologies. Vadose speleothems precipitated during glacial stages when sea level was lower than present. Progressive increase in δ13C and δ18O of the vadose speleothems resulted from cooling temperatures and more positive seawater δ18O associated with glacial buildup. Such covariation could be considered as a valid alternative to models predicting invariant δ18O and highly variable δ13C in meteoric calcite. Glacio‐eustatic oscillations of sea‐level are recorded as alternating vadose and mixing‐zone speleothems. Short‐term climatic variations are recorded as alternating aragonite and calcite speleothems precipitated in the mixing zone. Fluid‐inclusion and stable‐isotope data suggest that aragonite, as opposed to calcite, precipitated during times of reduced meteoric recharge.  相似文献   
300.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号