首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51287篇
  免费   696篇
  国内免费   336篇
测绘学   1390篇
大气科学   3988篇
地球物理   9655篇
地质学   16846篇
海洋学   4368篇
天文学   12574篇
综合类   109篇
自然地理   3389篇
  2020年   356篇
  2019年   363篇
  2018年   863篇
  2017年   833篇
  2016年   1094篇
  2015年   728篇
  2014年   1210篇
  2013年   2548篇
  2012年   1158篇
  2011年   1627篇
  2010年   1486篇
  2009年   2028篇
  2008年   1843篇
  2007年   1844篇
  2006年   1739篇
  2005年   1596篇
  2004年   1559篇
  2003年   1468篇
  2002年   1401篇
  2001年   1267篇
  2000年   1210篇
  1999年   1166篇
  1998年   1104篇
  1997年   1089篇
  1996年   873篇
  1995年   867篇
  1994年   827篇
  1993年   762篇
  1992年   730篇
  1991年   707篇
  1990年   796篇
  1989年   704篇
  1988年   668篇
  1987年   775篇
  1986年   641篇
  1985年   860篇
  1984年   978篇
  1983年   944篇
  1982年   891篇
  1981年   856篇
  1980年   754篇
  1979年   718篇
  1978年   716篇
  1977年   652篇
  1976年   620篇
  1975年   543篇
  1974年   609篇
  1973年   600篇
  1972年   374篇
  1971年   346篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
981.
In several nearby LL* early‐type galaxies, recent observations at large radii have shown indications of a lack of dark matter, substantially at odds with the prediction from the Cold Dark Matter (CDM) hierarchical merger models. Here we discuss a pilot observational project for the study of the internal kinematical and dynamical properties of this remarkable sample of galaxies. Using the VIMOS‐IFU in its high spectral resolution mode, it would be possible to investigate the regions up to ∼1.2 Re, taking advantage of the much larger field of view and telescope diameter. This will allow to disclose the presence of any kinematical substructures which could affect the conclusion on the mass modeling and definitely clarify the inner structure of this particular class of early‐type galaxies. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
982.
We present high resolution Doppler images of the short period (P = 0.362 d) contact binary AE Phe. Using least squares deconvolution, we make use of the information content of the several thousand lines in each échelle spectrum to obtain the necessary S/N and time resolution required to resolve individual starspot features. A single pair of rotationally broadened profiles (free of sidelobes due to blending) with a typical S/N of 3000 ‐ 4000 per spectrum is thus obtained. With 300 sec exposures we achieve a cadence of 350 sec which is equivalent to sampling the rotation phase every 4°. We derive images for four nights of data which reveal starspots at most latitudes on both components of the common envelope system. Individual starspots evolve significantly on very short timescales, of order one day; significantly faster than the week timescales found on active single stars and the Sun. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
983.
We have studied Locally Rotationally Symmetric (LRS) Bianchi type-I space-time having constant deceleration parameter and filled with perfect fluid in the Hoyle-Narlikar C-field cosmology. Here, the creation field C is a function of time t only. The geometrical and physical aspects for the models are also studied.  相似文献   
984.
We simulate the rise through the upper convection zone and emergence through the solar surface of initially uniform, untwisted, horizontal magnetic flux, with the same entropy as the nonmagnetic plasma, that is advected into a domain 48 Mm wide by 20 Mm deep. The magnetic field is advected upward by the diverging upflows and pulled down in the downdrafts, which produces a hierarchy of loop-like structures of increasingly smaller scale as the surface is approached. There are significant differences between the behavior of fields of 10 kG and 20 or 40 kG strength at 20 Mm depth. The 10 kG fields have little effect on the convective flows and show small magnetic-buoyancy effects, reaching the surface in the typical fluid rise time from 20 Mm depth of 32 hours. 20 and 40 kG fields significantly modify the convective flows, leading to long, thin cells of ascending fluid aligned with the magnetic field and their magnetic buoyancy makes them rise to the surface faster than the fluid rise time. The 20 kG field produces a large-scale magnetic loop that as it emerges through the surface leads to the formation of a bipolar, pore-like structure.  相似文献   
985.
There is enormous potential for more mobile planetary surface science. This is especially true in the case of Mars because the ability to cross challenge terrain, access areas of higher elevation, visit diverse geological features and perform long traverses of up to 200 km supports the search for past water and life. Vehicles capable of a ballistic ‘hop’ have been proposed on several occasions, but those proposals using in-situ acquired propellants are the most promising for significant planetary exploration. This paper considers a mission concept termed Mars Reconnaissance Lander using such a vehicle. We describe an approach where planetary science requirements that cannot be met by a conventional rover are used to derive vehicle and mission requirements.The performance of the hopper vehicle was assessed by adding estimates of gravity losses and mission mass constraints to recently developed methods. A baseline vehicle with a scientific payload of 16.5 kg and conservatively estimated sub-system masses is predicted to achieve a flight range of 0.97 km. Using a simple consideration of system reliability, the required cumulative range of 200 km could be achieved with a probability of around 80%. Such a range is sufficient to explore geologically diverse terrains. We therefore plot an illustrative traverse in Hypanis Valles/Xanthe Terra, which encounters crater wall sections, periglacial terrain, aqueous sedimentary deposits and a traverse up an ancient fluvial channel. Such a diversity of sites could not be considered with a conventional rover. The Mars Reconnaissance Lander mission and vehicle presents some very significant engineering challenges, but would represent a valuable complement to rovers, static landers and orbital observations.  相似文献   
986.
Conspicuous excess brightness, exceeding that expected from coronal and zodiacal light (CZL), was observed above the lunar horizon in the Apollo 15 coronal photographic sequence acquired immediately after orbital sunset (surface sunrise). This excess brightness systematically faded as the Command Module moved farther into shadow, eventually becoming indistinguishable from the CZL background. These observations have previously been attributed to scattering by ultrafine dust grains (radius ∼0.1 microns) in the lunar exosphere, and used to obtain coarse estimates of dust concentration at several altitudes and an order-of-magnitude estimate of ∼10−9 g cm−2 for the column mass of dust near the terminator, collectively referred to as model “0”.We have reanalyzed the Apollo 15 orbital sunset sequence by incorporating the known sightline geometries in a Mie-scattering simulation code, and then inverting the measured intensities to retrieve exospheric dust concentration as a function of altitude and distance from the terminator. Results are presented in terms of monodisperse (single grain size) dust distributions. For a grain radius of 0.10 microns, our retrieved dust concentration near the terminator (∼0.010 cm−3) is in agreement with model “0” at z=10 km, as is the dust column mass (∼3–6×10−10 g cm−2), but the present results indicate generally larger dust scale heights, and much lower concentrations near 1 km (<0.08 cm−3 vs. a few times 0.1 cm−3 for model “0"). The concentration of dust at high altitudes (z>50 km) is virtually unconstrained by the measurements. The dust exosphere extends into shadow a distance somewhere between 100 and 200 km from the terminator, depending on the uncertain contribution of CZL to the total brightness. These refined estimates of the distribution and concentration of exospheric dust above the lunar sunrise terminator should place new and more rigorous constraints on exospheric dust transport models, as well as provide valuable support for upcoming missions such as the Lunar Atmosphere and Dust Environment Explorer (LADEE).  相似文献   
987.
SWAN, the all-sky hydrogen Lyman-alpha camera on the SOHO spacecraft, designed primarily to image the interplanetary neutral hydrogen around the Sun, also observes comets continuously over large portions of their apparitions to the north and south of the ecliptic and at small solar elongation angles. Because of SOHO’s location at the L1 Lagrange point, analysis of SWAN images provides excellent temporal coverage of water production. We report here our results of observations of some interesting target comets selected from the extensive SWAN archive. These include three Oort Cloud Comets C/2002 V1 (NEAT), C/2002 X5 (Kudo–Fujikawa), C/2006 P1 (McNaught) and three apparitions of atypical short-period Comet 96P/Machholz 1. The common aspect of these four comets is their small perihelion distances, which are 0.19, 0.09, 0.17, and 0.12 AU, respectively. Their water production rates over their whole apparitions can be approximated by power laws in heliocentric distance (r in AU) as follows: 1.3 × 1029 r−2.1 s−1 for C/2002 V1 (NEAT), 7.5 × 1028 r−2.0 s−1 for C/2002 X5 (Kudo–Fujikawa), 5.4 × 1029 r−2.4 s−1 for C/2006 (P1 McNaught) and 4.6 × 1027 r−2.1 s−1 for 96P/Machholz 1. We also present daily-average water production rates for the long-period comets over long continuous time periods. We examine these results in light of our growing survey of comets that is yielding some interesting comparisons of water production rate variations with heliocentric distance and taxonomic classes.  相似文献   
988.
The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft completed three flybys of Mercury in 2008–2009. During the first and third of those flybys, MESSENGER passed behind the planet from the perspective of Earth, occulting the radio-frequency (RF) transmissions. The occultation start and end times, recovered with 0.1 s accuracy or better by fitting edge-diffraction patterns to the RF power history, are used to estimate Mercury's radius at the tangent point of the RF path. To relate the measured radius to the planet shape, we evaluate local topography using images to identify the high-elevation feature that defines the RF path or using altimeter data to quantify surface roughness. Radius measurements are accurate to 150 m, and uncertainty in the average radius of the surrounding terrain, after adjustments are made from the local high at the tangent point of the RF path, is 350 m. The results are consistent with Mercury's equatorial shape as inferred from observations by the Mercury Laser Altimeter and ground-based radar. The three independent estimates of radius from occultation events collectively yield a mean radius for Mercury of 2439.2±0.5 km.  相似文献   
989.
990.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号