首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68916篇
  免费   1206篇
  国内免费   564篇
测绘学   1852篇
大气科学   5279篇
地球物理   13628篇
地质学   23464篇
海洋学   5751篇
天文学   15945篇
综合类   143篇
自然地理   4624篇
  2020年   455篇
  2019年   450篇
  2018年   1067篇
  2017年   1033篇
  2016年   1397篇
  2015年   940篇
  2014年   1515篇
  2013年   3369篇
  2012年   1525篇
  2011年   2176篇
  2010年   1951篇
  2009年   2642篇
  2008年   2419篇
  2007年   2387篇
  2006年   2312篇
  2005年   2085篇
  2004年   2093篇
  2003年   1961篇
  2002年   1889篇
  2001年   1648篇
  2000年   1613篇
  1999年   1524篇
  1998年   1455篇
  1997年   1479篇
  1996年   1205篇
  1995年   1194篇
  1994年   1138篇
  1993年   1038篇
  1992年   1010篇
  1991年   934篇
  1990年   1054篇
  1989年   905篇
  1988年   909篇
  1987年   1027篇
  1986年   876篇
  1985年   1206篇
  1984年   1356篇
  1983年   1322篇
  1982年   1197篇
  1981年   1140篇
  1980年   1059篇
  1979年   990篇
  1978年   1003篇
  1977年   899篇
  1976年   883篇
  1975年   788篇
  1974年   893篇
  1973年   852篇
  1972年   550篇
  1971年   478篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
961.
John W. Larimer 《Icarus》1979,40(3):446-454
It has long been recognized that Cr, Mg, and Si are fractionated in chondritic material along with, but to a much lesser extent than, a large group of more refractory elements. Reasoning that this might imply some unique distribution at the time of fractionation, the patterns have been reexamined. It now appears as if two distinct fractionation patterns can be resolved: one involving ordinary and enstatite chondrites and the other involving carbonaceous chondrites, the Earth, the Moon, and the eucrite parent body. Significantly, the two trends inevitably intersect at C1 composition. Ordinary and enstatite chondrites appear to have evolved from C1 composition via the removal of about 40 and 56% of a high-temperature condensate. Another high-temperature condensate, with a distinctly different composition, appears to be enriched in the carbonaceous chondrites, the Moon, and possibly the Earth, but depleted in the eucrite parent body. The compositions of these two components are constrained to fall on the appropriate mixing lines. These lines intersect the condensation path at two points, one where Mg2SiO4 has just begun to condense (~20%) and a second where Mg2SiO4 was almost completely condensed (~90%). This represents about an 80° temperature difference. But it is within this range that the largest fraction of planetary matter (Mg, Si, and Fe) condenses. Conceivably the relatively sudden appearance of large amounts of condensed material is in some way related to the fractionation process, although the exact relationship cannot be specified.  相似文献   
962.
Since the original suggestion by Gillett et al. (1969) it has generally been assumed that the region of partial transparency near 5 μm in Jupiter's atmosphere (the 5-μm window) is bounded by the v4 NH3 at 6.1 μm and the v3 CH4 band at 3.3 μm. New measurements of Jupiter and of laboratory phosphine (PH3) samples show that PH3 is a significant contributor to the continuum opacity in the window and in fact defines its short-wavelength limit. This has important implications for the use of 5-mu;m observations as a means to probe the deep atmospheric structure of Jupiter. The abundance of PH3 which results from a comparison of Jovian and laboratory spectra is about 3 to 5 cm-am. This is five to eight times less than that found by Larson et al. [Astrophys. J. (1977) 211, 972–979] in the same spectral region, but is in good agreement with the result of Tokunaga et al. [Astrophys. J. (1979) 232, 603–615] from 10-μm observations.  相似文献   
963.
Evolution of massive stars losing mass with the rateM H L/V C is computed (for =1,2,7). It is shown that observed mass loss rates correspond to 0.3 and, therefore, mass loss by stellar wind cannot play any significant role in the evolution of normal massive stars. However, for several types of massive stars (WR, OH/IR, X-ray sources) enhanced mass loss explains their peculiar features. Computations of evolutionary sequences of massive stars with convective overshooting taken into account (as a formal increase of the convective core) show that a significant broadening of the hydrogen-burning band in the H-R diagram may be obtained.  相似文献   
964.
This paper deals with two main effects: First the empirical metal abundance distribution in Main Sequence disk dwarfs of the solar neighbourhood, and second, the theoretical possibility of (i) an increased helium content as the Galaxy evolves, and (ii) the presence of evolutionary effects in disk dwarfs (i.e., the age of some or all stars considered up to the subgiant phase is not necessarily longer than the age of the galactic disk). We take into account a linear increase of helium content with metal content, and we impose some constraints relative to initial, solar and present-day observed values ofY andZ, and to observed relative helium to heavy element enrichment, Y/Z. In this way, little influence is found on the empirical metal abundance distribution in the range 0Y/Z3, while larger values of Y/Z would lead to a more significant influence. Evolved and unevolved theoretical metal abundance distributions are derived by accounting for a two-phase model of chemical evolution of galaxies and for a linear mass dependence of star lifetimes in the spectral range G2V–G8V, and are compared with the empirical distribution. All are in satisfactory agreement due to systematic shift data by different observations; several values o collapse timeT c and age of the GalaxyT are also considered. Finally, models of chemical evolution invoking homogeneous collapse without infall and inhomogeneous collapse with infall, are briefly discussed relative to the empirical metal abundance distribution in Main Sequence disk dwarfs of the solar neighbourhood.  相似文献   
965.
A.W. Harris  J. Young 《Icarus》1979,38(1):100-105
Photoelectric observations of six asteroids are presented. The following synodic periods of rotation and amplitudes of variation are reported: 42 Isis, P = 13h.59, Δm = 0.32; 45 Eugenia, P = 5h.70, Δm = 0.30; 56 Melete, P = 13h.7 or 19h.0, Δm = 0.06; 532 Herculina, P = 9h.408, Δm = 0.15; 558 Carmen, P ≈ 10h, Δm ≈ 0.25. The asteroid 103 Hera exhibited no periodic variation in excess of about 0.03 magnitude. The period found for 532 Herculina is one half that previously reported by other observers.  相似文献   
966.
Pluto and the chaotic satellite system of Neptune may have originated from a single encounter of Neptune with a massive solar system body. A series of numerical experiments has been carried out to try to set limits on the circumstances of such an encounter. These experiments show that orbits very much like those of Pluto, Triton, and Nereid can result from a single close encounter of such a body with Neptune. The implied mass range and encounter velocities limit the source of the encountering body to a former trans-Neptunian planet in the 2- to 5-Earth-mass range.  相似文献   
967.
Bruce Fegley  John S. Lewis 《Icarus》1979,38(2):166-179
The thermochemistry of several hundred compounds of twelve selected trace elements (Ge, Se, Ga, As, Te, Pb, Sn, Cd, Sb, Tl, In, and Bi) has been investigated for solar composition material along a Jupiter adiabat. The results indicate that AsF3, InBr, TlI, and SbS, in addition to CO, PH3, GeH4, AsH3, H2Se, HCl, HF, and H3BO3 proposed by Barshay and Lewis (1978), may be potential chemical tracers of atmospheric dynamics. The reported observations of GeH4 is interpreted on the basis of new calculations as implying rapid vertical transport from levels where T ? 800°K. Upper limits are also set on the abundances of many gaseous compounds of the elements investigated.  相似文献   
968.
The location, size, and principal characteristics of the currently known proven and probable terrestrial impact structures are tabulated. Of the 78 known probable structures, only 3 are Precambrian and the majority are <300 my in age. A survey of the variation in preservation with size and age indicates that, unless protected by sedimentary cover, a structure <20 km in diameter has a recognizable life of <600 my. The depth-diameter relationships of terrestrial structures are similar to lunar craters; however, it is believed that terrestrial craters were always shallower than their lunar counterparts. Complex structures formed in sedimentary targets are shallower than those in crystalline targets, and the transition from simple to complex crater morphology occurs in sedimentary strata at approximately one-half the diameter of the morphology transition in crystalline rocks. This is a reflection of target strength. Although observations indicate that crater size, target strength, and surface gravity are variables in the formation of complex craters, they do not permit an unequivocal choice between collapse and rebound processes for the formation of complex structures. It may be that both processes act together in the modification of crater morphology during the later stages of excavation. The major emphasis of recent shock metamorphic studies has been toward the development of models of cratering processes. An important contribution has been the identification, through meteoritic contamination in the melt rocks, of the type of bolide at a number of probable impact structures. This has served to strengthen the link between the occurrence of shock metamorphic effects and their origin by hypervelocity meteorite impact.  相似文献   
969.
The vertical distribution of ozone in the atmosphere of Mars is computed from ultraviolet spectra obtained by the Mariner 9 spacecraft. In the Northern Hemisphere the ozone scale height is much smaller than the atmospheric scale height in midlatitudes and increases rapidly to a maximum farther north. At high latitudes (above 60°) there is no significant difference between the scale heights of ozone in the Northern (winter) Hemisphere and the Southern (summer) Hemisphere. Comparison of the ozone distribution with atmospheric temperature structure indicates that at some locations in the North, the density of water vapor increases with altitude, and the time for vertical mixing is about 3 days or more.  相似文献   
970.
Photospheric and chromospheric spectroscopic Doppler rotation rates for the full solar disk are analyzed for the period July, 1966 to July, 1978. An approximately linear secular increase of the equatorial rate of 3.7% for these 12 years is found (in confirmation of Howard, 1976). The high latitude rates above 65 ° appear to vary with a peak-to-peak amplitude of 8%, or more, phased to the sunspot cycle such that the most rapid rotation occurs at, or following, solar maximum. The chromosphere, as indicated by H, has continued to rotate on the average 3% faster than the photosphere agreeing with past observations. Sources of error are discussed and evaluated.Operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号