首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52823篇
  免费   5855篇
  国内免费   8507篇
测绘学   3019篇
大气科学   8269篇
地球物理   11880篇
地质学   26908篇
海洋学   4471篇
天文学   3002篇
综合类   5019篇
自然地理   4617篇
  2024年   161篇
  2023年   623篇
  2022年   1390篇
  2021年   1606篇
  2020年   1322篇
  2019年   1484篇
  2018年   6054篇
  2017年   5199篇
  2016年   4118篇
  2015年   1690篇
  2014年   1984篇
  2013年   1849篇
  2012年   2617篇
  2011年   4285篇
  2010年   3687篇
  2009年   3935篇
  2008年   3332篇
  2007年   3698篇
  2006年   1296篇
  2005年   1243篇
  2004年   1273篇
  2003年   1255篇
  2002年   1078篇
  2001年   858篇
  2000年   1053篇
  1999年   1463篇
  1998年   1177篇
  1997年   1157篇
  1996年   1036篇
  1995年   900篇
  1994年   843篇
  1993年   717篇
  1992年   567篇
  1991年   456篇
  1990年   337篇
  1989年   309篇
  1988年   280篇
  1987年   173篇
  1986年   149篇
  1985年   114篇
  1984年   71篇
  1983年   58篇
  1982年   73篇
  1981年   77篇
  1980年   49篇
  1979年   31篇
  1978年   10篇
  1977年   4篇
  1976年   13篇
  1958年   27篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
71.
提出了用牛顿非线性迭代法同时反演大气参数和表层温度,该反演算法应用到我国渤海地区MODIS红外资料中,可反演得到中尺度范围内的大气温度、水汽廓线,其误差分别不超过1.5 K和18%。反演得到的表层温度、大气可降水量(TPW)和大气稳定度(TTI)与美国国家宇航局(NASA)MOD07产品相似。  相似文献   
72.
In an elementary approach every geometrical height difference between the staff points of a levelling line should have a corresponding average g value for the determination of potential difference in the Earth’s gravity field. In practice this condition requires as many gravity data as the number of staff points if linear variation of g is assumed between them. Because of the expensive fieldwork, the necessary data should be supplied from different sources. This study proposes an alternative solution, which is proved at a test bed located in the Mecsek Mountains, Southwest Hungary, where a detailed gravity survey, as dense as the staff point density (~1 point/34 m), is available along a 4.3-km-long levelling line. In the first part of the paper the effect of point density of gravity data on the accuracy of potential difference is investigated. The average g value is simply derived from two neighbouring g measurements along the levelling line, which are incrementally decimated in the consecutive turns of processing. The results show that the error of the potential difference between the endpoints of the line exceeds 0.1 mm in terms of length unit if the sampling distance is greater than 2 km. Thereafter, a suitable method for the densification of the decimated g measurements is provided. It is based on forward gravity modelling utilising a high-resolution digital terrain model, the normal gravity and the complete Bouguer anomalies. The test shows that the error is only in the order of 10−3mm even if the sampling distance of g measurements is 4 km. As a component of the error sources of levelling, the ambiguity of the levelled height difference which is the Euclidean distance between the inclined equipotential surfaces is also investigated. Although its effect accumulated along the test line is almost zero, it reaches 0.15 mm in a 1-km-long intermediate section of the line.  相似文献   
73.
随着人类活动对环境的影响,人口、资源与环境问题日益突出,由此引起的土地利用变化尤其引起普遍关注。随着遥感平台的多样化和图像分辨率的提高,遥感技术已成为土地利用现状调查研究中不可或缺的手段。遥感技术以其宏观性、实时性、周期性及综合性等特点,为快速、客观、准确地获取土地利用现状信息提供了可能。通过采用2007年大安市SPOT 5遥感影像,对大安市的土地利用类型进行解译,最终得到各类土地的分类数据,以此为基础开展土地利用现状分析。  相似文献   
74.
This paper systematically studies the statistical diagnosis and hypothesis testing for the semiparametric linear regression model according to the theories and methods of the statistical diagnosis and hypothesis testing for parametric regression model.Several diagnostic measures and the methods for gross error testing are derived.Especially,the global and local influence analysis of the gross error on the parameter X and the nonparameter s are discussed in detail;at the same time,the paper proves that the d...  相似文献   
75.
Most satellites in a low-Earth orbit (LEO) with demanding requirements on precise orbit determination (POD) are equipped with on-board receivers to collect the observations from Global Navigation Satellite systems (GNSS), such as the Global Positioning System (GPS). Limiting factors for LEO POD are nowadays mainly encountered with the modeling of the carrier phase observations, where a precise knowledge of the phase center location of the GNSS antennas is a prerequisite for high-precision orbit analyses. Since 5 November 2006 (GPS week 1400), absolute instead of relative values for the phase center location of GNSS receiver and transmitter antennas are adopted in the processing standards of the International GNSS Service (IGS). The absolute phase center modeling is based on robot calibrations for a number of terrestrial receiver antennas, whereas compatible antenna models were subsequently derived for the remaining terrestrial receiver antennas by conversion (from relative corrections), and for the GNSS transmitter antennas by estimation. However, consistent receiver antenna models for space missions such as GRACE and TerraSAR-X, which are equipped with non-geodetic receiver antennas, are only available since a short time from robot calibrations. We use GPS data of the aforementioned LEOs of the year 2007 together with the absolute antenna modeling to assess the presently achieved accuracy from state-of-the-art reduced-dynamic LEO POD strategies for absolute and relative navigation. Near-field multipath and cross-talk with active GPS occultation antennas turn out to be important and significant sources for systematic carrier phase measurement errors that are encountered in the actual spacecraft environments. We assess different methodologies for the in-flight determination of empirical phase pattern corrections for LEO receiver antennas and discuss their impact on POD. By means of independent K-band measurements, we show that zero-difference GRACE orbits can be significantly improved from about 10 to 6 mm K-band standard deviation when taking empirical phase corrections into account, and assess the impact of the corrections on precise baseline estimates and further applications such as gravity field recovery from kinematic LEO positions.  相似文献   
76.
Many regions around the world require improved gravimetric data bases to support very accurate geoid modeling for the modernization of height systems using GPS. We present a simple yet effective method to assess gravity data requirements, particularly the necessary resolution, for a desired precision in geoid computation. The approach is based on simulating high-resolution gravimetry using a topography-correlated model that is adjusted to be consistent with an existing network of gravity data. Analysis of these adjusted, simulated data through Stokes’s integral indicates where existing gravity data must be supplemented by new surveys in order to achieve an acceptable level of omission error in the geoid undulation. The simulated model can equally be used to analyze commission error, as well as model error and data inconsistencies to a limited extent. The proposed method is applied to South Korea and shows clearly where existing gravity data are too scarce for precise geoid computation.  相似文献   
77.
A three-step hierarchical Semi Automated Empirical Methane Emission Model (SEMEM) has been used to estimate methane emission from wetlands and waterlogged areas in India using Moderate Resolution Imagine Spectroradiometer (MODIS) sensor data onboard Terra satellite. Wetland Surface Temperature (WST), methane emission fluxes and wetland extent have been incorporated as parameters in order to model the methane emission. Analysis of monthly MODIS data covering the whole of India from November 2004 to April 2006 was carried out and monthly methane emissions have been estimated. Interpolation techniques were adopted to fill the data gaps due to cloudy conditions during the monsoon period. AutoRegressive Integrated Moving Average (ARIMA) model has been fitted to estimate the emitted methane for the months of May 2006 to August 2006 using SPSS software.  相似文献   
78.
A global, 2-hourly atmospheric precipitable water (PW) dataset is produced from ground-based GPS measurements of zenith tropospheric delay (ZTD) using the International Global Navigation Satellite Systems (GNSS) Service (IGS) tropospheric products (~80–370 stations, 1997–2006) and US SuomiNet product (169 stations, 2003–2006). The climate applications of the GPS PW dataset are highlighted in this study. Firstly, the GPS PW dataset is used as a reference to validate radiosonde and atmospheric reanalysis data. Three types of systematic errors in global radiosonde PW data are quantified based on comparisons with the GPS PW data, including measurement biases for each of the fourteen radiosonde types along with their characteristics, long-term temporal inhomogeneity and diurnal sampling errors of once and twice daily radiosonde data. The comparisons between the GPS PW data and three reanalysis products, namely the NCEP-NCAR (NNR), ECMWF 40-year (ERA-40) and Japanese reanalyses (JRA), show that the elevation difference between the reanalysis grid box and the GPS station is the primary cause of the PW difference. Secondly, the PW diurnal variations are documented using the 2-hourly GPS PW dataset. The PW diurnal cycle has an annual-mean, peak-to-peak amplitude of 0.66, 0.53 and 1.11 mm for the globe, Northern Hemisphere, and Southern Hemisphere, respectively, with the time of the peak ranging from noon to late evening depending on the season and region. Preliminary analyses suggest that the PW diurnal cycle in Europe is poorly represented in the NNR and JRA products. Several recommendations are made for future improvements of IGS products for climate applications.  相似文献   
79.
80.
Use of laser range and height texture cues for building identification   总被引:1,自引:0,他引:1  
Airborne LiDAR has found application in an increasing number of mapping and Geo-data acquisition tasks. Apart from terrain information generation, applications such as automatic detection and modeling of objects like buildings or vegetation for the generation of 3-D city models have been explored. Besides the height itself, height texture defined by local variations of the height is a significant parameter for object recognition. The paper explores the potential of the analysis of height texture as a cue for the automatic detection of objects in LiDAR datasets. A number of texture measures were computed. Based on their definition and computation these measures were used as bands in a classification algorithm, and objects like buildings, single trees, and roads could be recognized.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号