首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5801篇
  免费   2篇
  国内免费   9篇
测绘学   24篇
大气科学   1076篇
地球物理   1388篇
地质学   3211篇
海洋学   45篇
天文学   24篇
综合类   4篇
自然地理   40篇
  2013年   63篇
  1998年   33篇
  1997年   42篇
  1996年   81篇
  1995年   45篇
  1994年   41篇
  1993年   63篇
  1992年   156篇
  1991年   162篇
  1990年   150篇
  1989年   136篇
  1988年   140篇
  1987年   176篇
  1986年   137篇
  1985年   118篇
  1984年   164篇
  1983年   181篇
  1982年   191篇
  1981年   195篇
  1980年   159篇
  1979年   191篇
  1978年   169篇
  1977年   155篇
  1976年   116篇
  1975年   142篇
  1974年   134篇
  1973年   148篇
  1972年   139篇
  1971年   143篇
  1970年   152篇
  1969年   102篇
  1968年   137篇
  1967年   131篇
  1966年   89篇
  1965年   97篇
  1964年   108篇
  1963年   44篇
  1962年   94篇
  1960年   112篇
  1959年   38篇
  1957年   48篇
  1956年   41篇
  1955年   46篇
  1954年   68篇
  1953年   41篇
  1952年   58篇
  1951年   40篇
  1950年   63篇
  1949年   46篇
  1948年   36篇
排序方式: 共有5812条查询结果,搜索用时 15 毫秒
71.
72.
73.
Summary Intensity forecasts of a hurricane are shown to be quite sensitive to the initial meso-convective scale precipitation distributions. These are included within the data assimilation using a physical initialization that was developed at Florida State University. We show a case study of a hurricane forecast where the inclusion of the observed precipitation did provide reasonable intensity forecasts. Further experimentation with the inclusion or exclusion of individual meso-convective rainfall elements, around and over the storm, shows that the intensity forecasts were quite sensitive to these initial rainfall distributions. The exclusion of initial rain in the inner rain area of a hurricane leads to a much reduced intensity forecast, whereas that impact is less if the rainfall of an outer rain band was initially excluded.Intensity forecasts of hurricanes may be sensitive to a number of factors such as sea surface temperature anomalies, presence or absence of concentric eye walls, potential vorticity interactions in the upper troposphere and other environmental factors.This paper is a sequel to a recent study, Krishnamurti et al., 1997, on the prediction of hurricane OPAL of 1995 that was a category III storm over the Gulf of Mexico. In that study we showed successful forecasts of the storm intensity from the inclusion of observed rainfall distributions within physical initialization. In that paper we examined the issues of diabatic potential vorticity and the angular momentum in order to diagnose the storm intensity. All of the terms of the complete Ertel potential vorticity equation were evaluated and it was concluded that the diabatic contributions to the potential vorticity were quite important for the diagnosis of the storm's intensity. The present paper addresses some sensitivity issues related to the individual mesoconvective precipitating elements.With 4 Figures  相似文献   
74.
75.
The formation of tropical cyclones   总被引:16,自引:1,他引:16  
Summary This paper attempts a synthesis of new observations and new concepts on how tropical cyclone formation occurs. Despite many worthy observational and numerical modeling studies in recent decades, our understanding of the detailed physical processes associated with the early stages of tropical cyclone formation is still inadequate; operational forecast skill is not very high. Although theoretical ideas cover a wide range of possibilities, results of new observations are helping us to narrow our search into more specific and relevant topic areas.With 33 FiguresPrologueThis paper is dedicated to Professor Herbert Riehl under whom I studied tropical meteorology at the University of Chicago from 1957–1961 and was later associated with at Colorado State University (CSU). Professor Riehl arranged my first aircraft flights into hurricanes in the late 1950s and gave great encouragment to me to explore the secrets of what causes a tropical disturbance to be transformed into a tropical storm.Herbert would persist in asking me nearly every week or so what causes a hurricane to form? I and my graduate students and research colleagues at CSU have been working to uncover the secrets of tropical cyclone formation ever since. The following article gives my current best estimate of the primary physical processes involved with this topic.  相似文献   
76.
77.
78.
79.
Sampling efforts are constrained by limited availability of resources. Therefore, methods to reduce the number of samples, while still achieving reasonable accuracy are needed. Land-surface segmentation (LSS) has proven a powerful technique to partition digital elevation models (DEMs) and their derivatives into relatively homogeneous areas, which can be further employed as support in soil sampling. Though topography is one of the main soil forming factors, a robust assessment of the potential of this technique to digital soil mapping (DSM) is still missing. In this study, we aimed at evaluating the potential of LSS in stratifying a landscape into relatively homogeneous areas, which can be used as strata for guiding the selection of sampling points in DSM. The experiments were carried out in two study areas where soil samples were available. Land-surface derivatives were derived from DEMs and segmented with a tool based on the multiresolution segmentation algorithm, into objects considered as homogeneous soil-landscape divisions. Thus, one sample was randomly selected within each segment from the existing sample data, based on which predictions of soil classes/sub-orders and properties, i.e. soil texture and A-horizon thickness, were made. Results were compared with predictions based on simple random sampling (SRS) and conditioned Latin hypercube (cLHS). The segmentation-based sampling (SBS) scheme performed better than SRS and cLHS schemes in predicting the A-horizon thickness, soil texture fractions and soil classes, showing a high potential of LSS in stratifying a landscape for the purposes of DSM. The novelty of this study is in the way strata are constructed, rather than in the sampling design itself. Further research is needed to demonstrate the value of a SBS design for practical use. The analyses presented here further highlight the importance of considering locally adaptive techniques in optimization of sampling schemes and predictions of soil properties.  相似文献   
80.
A Modified Form of Mild-Slope Equation with Weakly Nonlinear Effect   总被引:6,自引:0,他引:6  
Nonlinear effect is of importance to waves propagating from deep water to shallow water.Thenon-linearity of waves is widely discussed due to its high precision in application.But there are still someproblems in dealing with the nonlinear waves in practice.In this paper,a modified form of mild-slope equa-tion with weakly nonlinear effect is derived by use of the nonlinear dispersion relation and the steady mild-slope equation containing energy dissipation.The modified form of mild-slope equation is convenient to solvenonlinear effect of waves.The model is tested against the laboratory measurement for the case of a submergedelliptical shoal on a slope beach given by Berkhoff et al,The present numerical results are also comparedwith those obtained through linear wave theory.Better agreement is obtained as the modified mild-slope e-quation is employed.And the modified mild-slope equation can reasonably simulate the weakly nonlinear ef-fect of wave propagation from deep water to coast.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号