首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6086篇
  免费   11篇
  国内免费   10篇
测绘学   28篇
大气科学   1087篇
地球物理   1451篇
地质学   3362篇
海洋学   66篇
天文学   63篇
综合类   5篇
自然地理   45篇
  2013年   73篇
  2009年   46篇
  2006年   39篇
  1997年   48篇
  1996年   82篇
  1995年   45篇
  1994年   41篇
  1993年   62篇
  1992年   160篇
  1991年   165篇
  1990年   156篇
  1989年   144篇
  1988年   141篇
  1987年   178篇
  1986年   140篇
  1985年   125篇
  1984年   168篇
  1983年   188篇
  1982年   197篇
  1981年   203篇
  1980年   160篇
  1979年   192篇
  1978年   170篇
  1977年   157篇
  1976年   119篇
  1975年   145篇
  1974年   136篇
  1973年   154篇
  1972年   141篇
  1971年   144篇
  1970年   157篇
  1969年   104篇
  1968年   139篇
  1967年   131篇
  1966年   91篇
  1965年   101篇
  1964年   108篇
  1963年   47篇
  1962年   97篇
  1960年   110篇
  1959年   39篇
  1957年   47篇
  1956年   42篇
  1955年   46篇
  1954年   70篇
  1953年   41篇
  1952年   65篇
  1951年   42篇
  1950年   64篇
  1949年   49篇
排序方式: 共有6107条查询结果,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
Woody, subalpine shrubs and grasses currently surround Lake Rutundu, Mount Kenya. Multiple proxies, including carbon isotopes, pollen and grass cuticles, from a 755‐cm‐long core were used to reconstruct the vegetation over the past 38 300 calendar years. Stable carbon‐isotope ratios of total organic carbon and terrestrial biomarkers from the lake sediments imply that the proportion of terrestrial plants using the C4 photosynthetic pathway was greater during the Late Pleistocene than in the Holocene. Pollen data show that grasses were a major constituent of the vegetation throughout the Late Pleistocene and Holocene. The proportion of grass pollen relative to the pollen from other plants was greatest at the last glacial maximum (LGM). Grass cuticles confirm evidence that C4 grass taxa were present at the LGM and that the majority followed the cold‐tolerant NADP‐MEC4 subpathway. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
9.
Abstract— Impact-induced comminution of planetary surfaces is pervasive throughout the solar system and occurs on submillimeter to global scales, resulting in comminution products that range from fine-grained surface soils, to massive, polymict ejecta deposits, to collisionally fragmented objects. Within this wide range of comminution products, we define regoliths in a narrow sense as materials that were processed by repetitive impacts to dimensional scales comparable to or smaller than that of component minerals of the progenitor rock(s). In this paper, we summarize a wide variety of impact experiments and other observations that were primarily intended to understand the evolution of regoliths on lunar basalt flows, and we discuss some of their implications for asteroidal surfaces. Cratering experiments in both rock and noncohesive materials, combined with photogeologic observations of the lunar surface, demonstrate that craters <500 m in diameter contribute most to the excavation of local bedrock for subsequent processing by micrometeorites. The overall excavation rate and, thus, growth rate of the debris layer decreases with time, because the increasingly thicker fragmental layer will prevent progressively larger projectiles from reaching bedrock. Typical growth rates for a 5 m thick lunar soil layer are initially (~≥3 Ga ago) a few mm/Ma and slowed to <1 mm/Ma at present. The coarse-grained crater ejecta are efficiently comminuted by collisional fragmentation processes, and the mean residence time of a 1 kg rock is typically 10 Ma. The actual comminution of either lithic or monomineralic detritus is highly mineral specific, with feldspar and mesostasis comminuting preferentially over pyroxene and olivine, thus resulting in mechanically fractionated fines, especially at grain sizes <20 μm. Such fractionated fines also participate preferentially in the shock melting of lunar soils, thus giving rise to “agglutinate” melts. As a consequence, agglutinate melts are systematically enriched in feldspar components relative to the bulk composition of their respective host soil(s). Compositionally homogeneous, impact derived glass beads in lunar soils seem to result from micrometeorite impacts on rock surfaces, reflecting lithic regolith components and associated mineral mixtures. Cumulatively, experimental and observational evidence from lunar mare soils suggests that regoliths derive substantially from the comminution of local bedrock; the addition of foreign, exotic components is not necessary to explain the modal and chemical compositions of diverse grain size fractions from typical lunar soils. Regoliths on asteroids are qualitatively different from those of the Moon. The modest impact velocities in the asteroid belt, some 5 km s?1, are barely sufficient to produce impact melts. Also, substantially more crater mass is being displaced on low-gravity asteroids compared to the Moon; collisional processing of surface boulders should therefore be more prominent in producing comminuted asteroid surfaces. These processes combine into asteroidal surface deposits that have suffered modest levels of shock metamorphism compared to the Moon. Impact melting does not seem to be a significant process under these conditions. However, the role of cometary particles encountering asteroid surfaces at presumably higher velocities has not been addressed in the past. Unfortunately, the asteroidal surface processes that seemingly modify the spectral properties of ordinary chondrites to match telescopically obtained spectra of S-type asteroids remain poorly understood at present, despite the extensive experimental and theoretical insights summarized in this report and our fairly mature understanding of lunar surface processes and regolith evolution.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号