首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   455篇
  免费   23篇
  国内免费   6篇
测绘学   30篇
大气科学   31篇
地球物理   118篇
地质学   200篇
海洋学   7篇
天文学   79篇
综合类   3篇
自然地理   16篇
  2022年   6篇
  2021年   3篇
  2020年   9篇
  2019年   4篇
  2018年   33篇
  2017年   27篇
  2016年   28篇
  2015年   17篇
  2014年   23篇
  2013年   27篇
  2012年   13篇
  2011年   17篇
  2010年   14篇
  2009年   13篇
  2008年   11篇
  2007年   7篇
  2006年   15篇
  2005年   8篇
  2004年   10篇
  2003年   7篇
  2002年   10篇
  2001年   6篇
  2000年   9篇
  1999年   3篇
  1998年   4篇
  1997年   4篇
  1996年   7篇
  1995年   5篇
  1994年   3篇
  1993年   7篇
  1991年   8篇
  1990年   4篇
  1988年   3篇
  1987年   6篇
  1986年   10篇
  1985年   7篇
  1984年   14篇
  1983年   8篇
  1982年   14篇
  1981年   5篇
  1980年   6篇
  1979年   5篇
  1978年   6篇
  1976年   3篇
  1974年   3篇
  1973年   7篇
  1972年   6篇
  1971年   4篇
  1970年   4篇
  1969年   2篇
排序方式: 共有484条查询结果,搜索用时 109 毫秒
391.
The cause for continuous induced seismicity at Koyna is not well understood. A heuristic model based on various physical parameters observed at Koyna is being proposed to explain the ongoing seismicity. This model contains two essential elements: (i) Intersecting faults near Koyna provide means of stress build-up in response to plate tectonic forces. (ii) The annual reservoir loading cycle and changes in the ground water table perturb this stress build-up by an influx of pore pressure in a fluid infiltrated medium. Hence, the spatial and temporal pattern of the pore prussure distribution and the seismicity will be governed by the location and hydromechanical properties of the faults and fractures. The predictions of the model can be tested by comparing the temporal and spatial pattern of seismicity with the changes in lake level and water table.  相似文献   
392.
393.
Components of surface energy balance in a temperate grassland ecosystem   总被引:7,自引:0,他引:7  
Eddy correlation measurements were made of fluxes of moisture, heat and momentum at a tallgrass prairie site near Manhattan, Kansas, U.S.A. during the First ISLSCP Field Experiment (FIFE) in 1987. The study site is dominated by three C4 grass species: big bluestem (Andropogon gerardii), indiangrass (Sorghastrum nutans), and switchgrass (Panicum virgatum). The stomatal conductance and leaf water potential of these grass species were also measured.In this paper, daily and seasonal variations in the components of the surface energy balance are examined. The aerodynamic and canopy surface conductances for the prairie vegetation are also evaluated.Published as Paper No. 8987, Journal Series, Nebraska Agricultural Research Division.
  相似文献   
394.
Spectral indices as an indicator of physiological traits affecting safflower yield in relation to soil variability were evaluated in a two year experiment (1997–1999). Reflectance, biometric and phonological data were collected. Two indices namely normalized differential vegetation index (NDVI) and ratio of spectral reflectance in infrared region to red region (1R/R) were derived from radiometric observation. Yield data indicated significant difference in different soils. Temporal NDVI behaviour as a function of soil type was not prominent especially in early stages of crop growth. However NDVI at 75 days after sowing (DAS) was found to be relatively better indicator of plant status and yield. IR/R was relatively less effective in indicating the differential response of crop to soil types. Effect of soil and crop interaction on spectral indices was significant at 75 and 90 DAS, which was attributed to attainment of maximum leaf area and leaf area at these stages of growth. Regression analysis showed strong positive relationship between NDVI and leaf area, dry matter and yield. IR/R and leaf area had the strongest and consistent relationship (r = 0.96). A single regression equation accounted for yield variability in the dataset. Thus possible transformation of NDVI maps (satellite data) to LAI units and consequently applications like yield forecasting was indicated. Utility of spectra-temporal data as a pointer of plant development status and yield was also demonstrated.  相似文献   
395.
Ice nucleating particle(INP) measurements were made at two high-altitude stations in India. Aerosols collected on filter paper at Girawali Observatory, Inter University Center for Astronomy Astrophysics(IGO), and at the Radio Astronomy Center, Ooty(RAC), were activated in deposition mode using a thermal gradient diffusion chamber to determine the INP concentrations. The measurement campaigns at IGO were conducted during 2011, 2013 and 2014, and at RAC during 2013 and 2014. When the aerosol samples were exposed to an ice supersaturation of between 5% and 23% in the temperature range~(-1)7.6?C to-22?C, the maximum INP number concentration at IGO and RAC was 1.0 L~(-1) and 1.6 L~(-1), respectively.A maximum correlation coefficient of 0.76 was observed between the INP number concentration and ice supersaturation. The airmass trajectories analyzed for the measurement campaigns showed that the Arabian Desert and arid regions were the main INP contributors. Elemental analysis of particles showed the presence of Na, Cl, Si, Al, Fe, Cu, Co, Cd, S, Mn and K, as well as some rare-Earth elements like Mo, Ru, La, Ce, V and Zr. When aerosols in the size range 0.5–20 μm were considered, the fraction that acted as INPs was 1 : 10~4 to 1 : 10~6 at IGO, and 1 : 10~3 to 1 : 10~4 at RAC. The higher ratio of INPs to aerosols at RAC than IGO may be attributable to the presence of rare-Earth elements observed in the aerosol samples at RAC, which were absent at IGO.  相似文献   
396.
The deformed sedimentary sequence exposed in the core of Precambrian Kaladgi Basin, North Karnataka India, has given rise to prominent regional basinal structures with intervening anticlines. Deformation ceases away from the core part. The basinal structures are recognised on satellite images, aerial photographs and toposheets because of resistant segmented ridges of quartzite. A closure view of Bhuvan images around Yadwad village, North Karnataka, the core portion of Kaladgi Basin also revealed presence of folded geometry in the older carbonates of Bagalkot Group seen along the margins of the regional folds. Though folding in the sequence exposed in the region around Yadwad and further west is described by many authors, no detailed analysis of structures is available in published literature. An attempt is made here to map, analyse and integrate the structures in carbonates of Yadwad region on different scales observed in the field to find out their possible origin. It is suggested that the structures are syntectonic in origin formed in the presence of circulating fluids in high pressure and low temperature during the post depositional phase the Bagalkot sequence in which gravity played an important role in the formation of regional structures. The sequence also has recorded low grade of metamorphism as seen from the thin section observations.  相似文献   
397.
Land degradation is becoming a serious problem in the west coast region of India where one of the world's eight biodiversity hotspots,the‘Western Ghats’,is present.Poor land management practices and high rainfall have led to increasing problems associated with land degradation.A long-term(13-year)experiment was done to evaluate the impact of soil and water conservation measures on soil carbon sequestration and soil quality at three different depths under cashew nut cultivation on a 19%slope.Five soil and water conservation measures-continuous contour trenches,staggered contour trenches,halfmoon terraces,semi-elliptical trenches,and graded trenches all with vegetative barriers of Stylosanthes scabra and Vetiveria zizanoides and control were evaluated for their influence on soil properties,carbon sequestration,and soil quality under cashews.The soil and water conservation measures improved significantly the soil organic carbon,soil organic carbon stock,carbon sequestration rate and microbial activity compared to the control condition(without any measures).Among the measures tested,continuous contour trenches with vegetative barriers outperformed the others with respect to soil organic carbon stock,sequestration rate,and microbial activity.The lower metabolic quotient with the measures compared to the control indicated alleviation of environmental stress on microbes.Using principal component analysis and a correlation matrix,a minimum dataset was identified as the soil available nitrogen,bulk density,basal soil respiration,soil pH,acid phosphatase activity,and soil available boron and these were the most important soil properties controlling the soil quality.Four soil quality indices using two summation methods(additive and weighted)and two scoring methods(linear and non-linear)were developed using the minimum dataset.A linear weighted soil quality index was able to statistically differentiate the effect of soil and water conservation measures from that of the control.The highest value of the soil quality index of 0.98 was achieved with continuous contour trenches with a vegetative barrier.The results of the study indicate that soil and water conservation measures for cashews are a potential strategy to improve the soil carbon sequestration and soil quality along with improving crop productivity and reducing the erosion losses.  相似文献   
398.
Leh and surrounding region of the Ladakh mountain range in the trans-Himalaya experienced multiple cloudbursts and associated flash floods during August 4–6, 2010. However, 12.8 mm/day rainfall recorded at the nearest meteorological station at Leh did not corroborate with the flood severity. For better understanding of this event, hydrological analysis and atmospheric modeling are carried out in tandem. Two small catchments (<3 km2) were studied along the stream continuum to assess the flood characteristics to identify the cloudburst impact zones. Peak flood discharges were estimated close to the head wall region and at the catchment outlet of the Leh town and the Sabu eastern tributary catchments. Storm runoff depth is estimated by developing a triangular hydrograph by using the known time base of the flood hydrograph. This triangular hydrographs have been transformed further into storm hydrographs to gain a better understanding of the storm duration by using the dimensionless hydrograph method at selected cross sections. Storm duration is estimated by using the relationship between time to peak and time of concentration of the catchment. The peak flood estimates ranged from 122(±35 %) m3/s for Leh town catchment (2.393 km2), 545(±35 %) m3/s for Sabu eastern tributary catchment (2.831 km2) to 1,070(±35 %) m3/sec for Sabu catchment (64.95 km2). To assess the atmospheric processes associated with this event, a triple nest simulation (27, 9 and 3 km) is performed using Advanced Research Weather Research and Forecasting (WRF) modeling system. The simulation does show the evolution of the event from August 4 to 6, 2010. Observation constraints, orographic responses, etc. make such analysis complex at such scale. Independent estimate by the atmospheric process model and the hydrological method shows the storm depth of 70 mm and 91.8(±35 %) mm, respectively, in catchment scale. Hydrological evaluation further refined the spatial and temporal extents of the cloudbursts in the respective catchments with an estimated storm depth of 209(±35 %) mm in 11.9 min and 320(±35 %) in 8.8 min occurring in an area of 0.842–1.601 km2, respectively. This study shows that the insight developed on the cloudburst phenomena by the atmospheric and the hydrological modeling is hugely constrained by the spatial and temporal scales of data used for the analysis. Apart from this, study also highlighted the regular occurrence of cloudburst events over this region in the recent past. Most of such events go unreported due to lack of monitoring mechanisms in the region and weaken our ability to understand these events in complete perspective.  相似文献   
399.
This paper mainly presents a case study of landslide vulnerability zonation along Tawaghat-Mangti route corridor in Kumaon Himalaya, India. An attempt is made to predict landslide susceptibility using back-propagation neural network (BPNN) and propose a suitable model for that zone, which can be successfully implemented for the prevention of slides. Various landslide affecting parameters such as lithology, slope, aspect, structure, geotechnical properties, land use, landslide inventory, and distance from recorded epicenter are used to model the landslide susceptibility. The database on the above parameters derived from satellite imageries, topographic maps, and field work are integrated in the GIS to generate an information layer. Database of this information layer is used to train, test, and validate the BPNN model. A three-layered BPNN with an input layer, two hidden layers, and one output layer is found to be optimal. The developed model demonstrates a promising result, and the prediction accuracy has been found to be 80?% in the field.  相似文献   
400.
Seismic ground motion caused by earthquakes mainly affects the constructions and structures around its area of influence. In this context, the probabilistic seismic hazard analysis (PSHA) is a scientific step towards the safety analysis of any major construction such as nuclear power plant. Thus, the present study focused to estimate seismic hazard level at different probabilities for Kakrapar nuclear power plant located in the Western India. The hazard curves for the study area are developed following the procedure of PSHA suggested by Cornell–McGuire. Three source zones, Narmada-Tapti zone (NTZ), Rann of Kuchchh (ROK), and west passive margin (WPM), are classified on the basis of seismicity and tectonic setting of the study area. The estimated maximum magnitude (m max) for NTZ, ROK, and WPM are 6.9 ± 0.57, 6.5 ± 0.64, and 6.1 ± 0.64, respectively. Logic tree approach has been used for the development of hazard curves to account the epistemic uncertainties associated with the analysis. For maximum credible earthquake [MCE, i.e., the probability of exceedance of 2 % in 50 years (return period of ~2,500 years)], the peak spectral acceleration (i.e., PSA at 0.2 s) expected around 5 km of the Kakrapar nuclear power plant (site) is 0.23 g from all source zones; however, at exact site location, it is 0.18 g. The PSA values due to NTZ, ROK, and WPM based on MCE are 0.22, 0.065, and 0.052 g, respectively. In case of design-based earthquake (DBE, i.e., 50 % probability in 50 years (return period of ~110 years)), the calculated maximum spectral acceleration (SA) from all source zones is about 0.045 g. The PSA distribution for the DBE from the NTZ has reached a maximum value of 0.042 g; however, PSA for ROK and WPM is considerably low with a maximum value of 0.022 and 0.021 g, respectively. Considering the MCE and DBE, the estimated PSA at 0.2 s has a highest value of ~0.23 g from all source zones. Spectral accelerations (SAs) correspond to different periods are presented, and SA plots for NTZ zone can be considered as response spectra for the KAPS site. Deaggregation of PSHA in the present study is also discussed. PGA values reported in seismic zonation map and global seismic hazard analysis program around the present study area range from 0.05 to 0.2 g which is slightly lower than the peak acceleration obtained in this study. The results of this study would facilitate in the performance of the site-specific seismic probabilistic safety analysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号