首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   519篇
  免费   21篇
  国内免费   3篇
测绘学   6篇
大气科学   27篇
地球物理   118篇
地质学   157篇
海洋学   42篇
天文学   145篇
综合类   1篇
自然地理   47篇
  2020年   5篇
  2019年   3篇
  2018年   11篇
  2017年   17篇
  2016年   21篇
  2015年   11篇
  2014年   15篇
  2013年   41篇
  2012年   14篇
  2011年   17篇
  2010年   13篇
  2009年   30篇
  2008年   24篇
  2007年   22篇
  2006年   20篇
  2005年   24篇
  2004年   20篇
  2003年   17篇
  2002年   20篇
  2001年   23篇
  2000年   17篇
  1999年   7篇
  1998年   9篇
  1997年   10篇
  1995年   11篇
  1994年   16篇
  1993年   7篇
  1992年   8篇
  1991年   7篇
  1990年   7篇
  1989年   12篇
  1988年   3篇
  1987年   8篇
  1986年   4篇
  1985年   3篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1981年   5篇
  1980年   4篇
  1979年   2篇
  1978年   1篇
  1977年   5篇
  1976年   1篇
  1975年   5篇
  1974年   3篇
  1973年   5篇
  1972年   3篇
  1971年   2篇
  1970年   2篇
排序方式: 共有543条查询结果,搜索用时 943 毫秒
421.
Biogeomorphic keystone species profoundly impact landscapes, such that their introduction or removal would cause fundamental changes in geomorphic systems. This paper explores the concept of biogeomorphic keystone species by examining the general vs. species-specific biogeomorphic impacts (BGIs) of trees on a limestone bedrock-controlled stream, Shawnee Run, in central Kentucky. Field investigation identified three strong BGIs: (i) biogeomorphic pool formation via bioweathering; (ii) root bank-associated bioprotection; and (iii) avulsion-originated island development linked to bioprotection. This research evaluates these impacts in the context of keystone or other biogeomorphic roles. A field survey was conducted on nine stream reaches, each consisting of 10–12 hydraulic units of riffle, pool, and run. Results suggest that American sycamore (Platanus occidentalis) plays a keystone role by promoting the development of ~42% of pools in the study area. While geomorphic pools are formed by fluvial process–form linkages, these biogeomorphic pools are developed by sycamore root-induced channel bed bioweathering. Only American sycamore and chinquapin oak (Quercus muehlenbergii) exhibited root-bank development amongst 15 different species identified – and thus play a vital role in bank bioprotection. Lastly, trees can promote avulsion-originated island formation by creating erosion-resistant bioprotective patches. Mature trees (in terms of size), particularly large American sycamore and chinquapin oak, dominate Shawnee Run islands with a mean diameter at breast height (DBH) > 40 cm. However, other trees can provide comparable bioprotection, particularly at mature stages. Because its absence would result in fundamentally different stream morphology, sycamore can be considered a biogeomorphic keystone species in Shawnee Run. © 2020 John Wiley & Sons, Ltd.  相似文献   
422.
The state of an Earth surface system (ESS) is determined by three sets of factors: laws, place, and history. Laws ( L = L1, L2, . . . , Ln) are the n general principles applicable to any such system at any time. Place factors ( P = P1, P2, . . . , Pm) are the m relevant characteristics of the local or regional environment. History factors ( H = H1 , H2, . . . , Hq) include the previous evolutionary pathway of the ESS, its stage of development, past disturbance, and initial conditions. Geoscience investigation may focus on laws, place, or history, but ultimately all three are necessary to understand and explain ESS. The LPH triad is useful as a pedagogical device, illustrated here via application to explaining the world's longest cave (Mammoth Cave, KY). Beyond providing a useful checklist, the LPH framework provides analytical traction to some difficult research problems. For example, studies of the avulsions of three southeast Texas rivers showed substantial differences in avulsion regimes and resulting alluvial morphology, despite the proximity and superficial similarity of the systems. Avulsions are governed by the same laws in all cases [ L (A) = L (B) = L (C)], and the three rivers have undergone the same sea‐level, climate, and tectonic histories, as well as the same general anthropic impacts [ H (A) ≈ H (B) ≈ H (C)]. Though regional environmental controls are similar, local details such as the location of the modern main channel relative to Pleistocene meander channels differ, and thus these place factors explain the differences between the rivers. The LPH framework, or similar types of reasoning, is implicit in many types of geoscience analysis. Explicit attention to the triad can help solve or address many specific problems and remind us of the importance of all three sets of factors. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
423.
424.
425.
The Atacama Large Millimeter/submillimeter Array (ALMA) radio telescope has commenced science observations of the Sun starting in late 2016. Since the Sun is much larger than the field of view of individual ALMA dishes, the ALMA interferometer is unable to measure the background level of solar emission when observing the solar disk. The absolute temperature scale is a critical measurement for much of ALMA solar science, including the understanding of energy transfer through the solar atmosphere, the properties of prominences, and the study of shock heating in the chromosphere. In order to provide an absolute temperature scale, ALMA solar observing will take advantage of the remarkable fast-scanning capabilities of the ALMA 12 m dishes to make single-dish maps of the full Sun. This article reports on the results of an extensive commissioning effort to optimize the mapping procedure, and it describes the nature of the resulting data. Amplitude calibration is discussed in detail: a path that uses the two loads in the ALMA calibration system as well as sky measurements is described and applied to commissioning data. Inspection of a large number of single-dish datasets shows significant variation in the resulting temperatures, and based on the temperature distributions, we derive quiet-Sun values at disk center of 7300 K at \(\lambda = 3~\mbox{mm}\) and 5900 K at \(\lambda = 1.3~\mbox{mm}\). These values have statistical uncertainties of about 100 K, but systematic uncertainties in the temperature scale that may be significantly larger. Example images are presented from two periods with very different levels of solar activity. At a resolution of about \(25''\), the 1.3 mm wavelength images show temperatures on the disk that vary over about a 2000 K range. Active regions and plages are among the hotter features, while a large sunspot umbra shows up as a depression, and filament channels are relatively cool. Prominences above the solar limb are a common feature of the single-dish images.  相似文献   
426.
Deposition and storage of fine‐grained (<62·5 μm) sediment in the hyporheic zone of gravel bed rivers frequently represents an important cause of aquatic habitat degradation. The particle size characteristics of such fine‐grained bed sediment (FGBS) exert an important control on its hydrodynamic properties and environmental impact. Traditionally, particle size analysis of FGBS in gravel bed rivers has focused on the absolute size distribution of the chemically dispersed mineral fraction. However, recent work has indicated that in common with fluvial suspended sediment, significant differences may exist between the absolute and the in situ, or effective, particle size composition of FGBS, as a result of the existence of aggregates, or composite particles. In the investigation reported in this paper, sealable bed traps that could be remotely opened to sample sediment deposited during specific storm runoff events and a laser back‐scatter probe were used to quantify the temporal and spatial variability of both the absolute and effective particle size composition of FGBS, and the associated suspended sediment from four gravel bed rivers in the Exe Basin, Devon, UK. The absolute particle size distributions of both the FGBS and suspended sediment evidenced c. >95%<62·5 μm sized primary particles and displayed a seasonal winter–summer fining, while the opposite trend was displayed by the effective particle size distribution of the FGBS and suspended sediment. The effective particle size distributions of both were typically highly aggregated, comprising up to 68%>62·5 μm sized particles. Spatial variation in the effective particle size and aggregation parameters was of secondary importance relative to temporal variation. The effective particle size distribution of the FGBS was consistently coarser and more aggregated than the associated suspended sediment and there was evidence of aggregate break‐up in samples of resuspended bed sediment. The implications of these findings for sediment transport modelling are considered. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   
427.
We inverted for laterally varying attenuation, absolute site terms, moments and apparent stress using over 460,000 Lg amplitudes recorded by the USArray for frequencies between 0.5 and 16 Hz. Corner frequencies of Wells, Nevada, aftershocks, obtained by independent analysis of coda spectral ratios, controlled the tradeoff between attenuation and stress, while independently determined moments from St. Louis University and the University of California constrained absolute levels. The quality factor, Q, was low for coastal regions and interior volcanic and tectonic areas, and high for stable regions such as the Great Plains, and Colorado and Columbia Plateaus. Q increased with frequency, and the rate of increase correlated inversely with 1-Hz Q, with highest rates in low-Q tectonic regions, and lowest rates in high-Q stable areas. Moments matched independently determined moments with a scatter of 0.2 NM. Apparent stress ranged from below 0.01 to above 1 MPa, with means of 0.1 MPa for smaller events, and 0.3 MPa for larger events. Stress was observed to be spatially coherent in some areas; for example, stress was lower along the San Andreas fault through central and northern California, and higher in the Walker Lane, and for isolated sequences such as Wells. Variance reduction relative to 1-D models ranged from 50 to 90 % depending on band and inversion method. Parameterizing frequency dependent Q as a power law produced little misfit relative to a collection of independent, multi-band Q models, and performed better than the omega-square source parameterization in that sense. Amplitude residuals showed modest, but regionally coherent patterns that varied from event to event, even between those with similar source mechanisms, indicating a combination of focal mechanism, and near source propagation effects played a role. An exception was the Wells mainshock, which produced dramatic amplitude patterns due to its directivity, and was thus excluded from the inversions. The 2-D Q plus absolute site models can be used for high accuracy, broad area source spectra, magnitude and yield estimation, and, in combination with models for all regional phases, can be used to improve discrimination, in particular for intermediate bands that allow coverage to be extended beyond that available for high frequency P-to-S discriminants.  相似文献   
428.
浅层地震资料解释陷阱(英文)   总被引:1,自引:0,他引:1  
高分辨率浅层地震方法是在近地表调查中使用最为广泛的方法。然而,在许多情况下,地震资料的解释经常会出现错误。在本文中,我们介绍了三个例子,分析了造成P波,SH波,多道的面波(MASW)地震资料解释的错误原因,大都是由于在表面或地下条件约束不确当引起的。第一个例子是P波反射剖面上的一个波的特征被解释为浅层断裂带,但后来证实它是由高水平的背景噪音引起的,因为采集测线通过了一个公路交叉口。第二个例子是SH波反射地震剖面上一个波特征被解释为是逆倾向滑断层,但有针对性的钻探表明,它是一个侵入到基岩面的一个深层局部侵蚀。最后,第三个例子,MASW调查剖面上,一个陡倾特征一开始被解释为基岩谷。然而,后来的钻探表明这是一个非常软的湖泊沉积物,后者严重损坏了应用面波频段。虽然最初的解释是不正确的,但这刺激地球物理学家和地质学家之间的讨论,并强调地球物理数据采集的时候,采集之前以及采集之后需要科学家之间有意义的合作与讨论。  相似文献   
429.
Biotic influences on geomorphology (and vice‐versa) are ubiquitous. This paper explores whether landforms may be extended (composite) phenotypes of biota, based on four criteria: process–form relationships between biota and landforms; evolutionary synchrony; selective pressure via ecosystem engineering and niche construction; and positive feedback benefitting the engineer organism(s). Coral reefs, peat bogs, biomantles, insect mounds, grassland soils, salt marshes, mangrove swamps, and some vegetation‐dependent sand dune types clearly meet these criteria. Karst landforms, meandering rivers, and tree uprooting pit‐mound systems meet the first three criteria, but positive feedback to engineer organisms has not been established. Research in biogeomorphology will surely identify other extended phenotypes. Implications are that biological evolution will continue to drive landscape metamorphosis, the appearance of new landform types, and presumably the disappearance of extended phenotypes associated with extinct species. Independently of extended phenotypes, tightly‐coupled geomorphological–ecological interactions such as coevolution, and biogeomorphic forms of ecosystem engineering and niche construction are common. The toposphere, encompassing Earth's landforms, is partly a biotic construct. Some elements would be present in an abiotic world, but the toposphere would not exist in anything resembling its contemporary state without a biosphere. This raises important questions with respect to Earth system evolution. The bio, litho‐, atmo‐, hydro‐, topo‐, and pedospheres coevolve at the global scale. Major biotic events have driven revolutions in the other spheres, but the atmosphere and the global hydrological system seem to have been relatively steady‐state at the global scale. The toposphere and pedosphere have not. This suggests that perhaps landforms and soils provide the major mechanisms or degrees of freedom by which Earth responds to biological evolution. Landforms and soils may thus be the ‘voice’ of the biosphere as it authors planetary change, even if clear biotic signatures are lacking. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
430.
The most important geomorphic responses to storms are qualitative changes in system state. Minor storms produce no state change or very rapid recovery to pre‐storm state, and extinction events wipe out the system. In other cases disturbance results in a state change, which may be transitional (change to a previously existing state), state space expansion (change to a new state), and clock‐resetting events that return the system to its initial state. Recovery pathways are much more varied than the monotonic progressions represented in classic vegetation succession and linear channel evolution models. Those linear sequential pathways are only one of several archetypal recovery pathways, which also include binary, convergent, divergent, and more complex networks. Filter‐dominated systems are more likely to follow linear sequential or convergent patterns, whereas amplifier‐dominance is characteristic of divergent and more complex mesh or fully‐connected patterns. Amplifier domination is also more likely to lead to evolutionary or state space expansion responses. Amplification and filtering in geomorphic response and recovery can be assessed using the 'Four R's' framework of response, resistance, relaxation, and recursion. High resistance and resilience, rapid relaxation times, and stable recursive feedback networks reduce or offset effects of disturbances, thus filtering their impacts. Conversely, low resistance and resilience, slow relaxation, and dynamically unstable feedbacks can exaggerate disturbances, creating disproportionately large and long‐lived impacts, thereby amplifying disturbances. Unless new filter mechanisms evolve (either autogenically or anthropically), or the number of extinction or clock‐resetting events increases, intensified storminess will result in more geomorphic variability. These ideas are applied to a case study of a flood on the Clark Fork River, Montana, USA. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号