首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1354篇
  免费   43篇
  国内免费   25篇
测绘学   24篇
大气科学   114篇
地球物理   274篇
地质学   496篇
海洋学   119篇
天文学   214篇
综合类   16篇
自然地理   165篇
  2023年   7篇
  2021年   16篇
  2020年   18篇
  2019年   19篇
  2018年   34篇
  2017年   20篇
  2016年   23篇
  2015年   39篇
  2014年   40篇
  2013年   82篇
  2012年   49篇
  2011年   83篇
  2010年   54篇
  2009年   68篇
  2008年   58篇
  2007年   76篇
  2006年   58篇
  2005年   46篇
  2004年   37篇
  2003年   33篇
  2002年   40篇
  2001年   22篇
  2000年   32篇
  1999年   25篇
  1998年   20篇
  1997年   22篇
  1996年   23篇
  1995年   14篇
  1994年   22篇
  1993年   15篇
  1992年   13篇
  1991年   17篇
  1990年   11篇
  1989年   22篇
  1988年   16篇
  1987年   21篇
  1986年   17篇
  1985年   17篇
  1984年   27篇
  1983年   17篇
  1982年   15篇
  1981年   16篇
  1980年   20篇
  1979年   15篇
  1978年   11篇
  1977年   11篇
  1976年   11篇
  1975年   13篇
  1974年   7篇
  1973年   11篇
排序方式: 共有1422条查询结果,搜索用时 15 毫秒
141.
In the Mont Blanc massif (European Western Alps), rockfalls are one of the main natural hazards for alpinists and infrastructure. Rockfall activity after the Little Ice Age is well documented. An increase in frequency during the last three decades is related to permafrost degradation caused by rising air temperatures. In order to understand whether climate exerts a long-term control on rockfall occurrence, a selection of paleo-rockfall scars was dated in the Glacier du Géant basin [>3200 m above sea level (a.s.l.)] using terrestrial cosmogenic nuclides. Rockfall occurrence was compared to different climatic and glacial proxies. This study presents 55 new samples (including replicates) and 25 previously-published ages from nine sampling sites. In total, 62 dated rockfall events display ages ranging from 0.03 ± 0.02 ka to 88.40 ± 7.60 ka. Holocene ages and their uncertainties were used to perform a Kernel density function into a continuous dataset displaying rockfall probability per 100 years. Results highlight four Holocene periods of enhanced rockfall occurrence: (i) c. 7–5.7 ka, related to the Holocene Warm Periods; (ii) c. 4.5–4 ka, related to the Sub-boreal Warm Period; (iii) c. 2.3–1.6 ka, related to the Roman Warm Period; and (iv) c. 0.9–0.3 ka, related to the Medieval Warm Period and beginning of the Little Ice Age. Laser and photogrammetric three-dimensional (3D) models of the rock walls were produced to reconstruct the detached volumes from the best-preserved rockfall scars (≤0.91 ± 0.12 ka). A structural study was carried out at the scale of the Glacier du Géant basin using aerial photographs, and at the scale of four selected rock walls using the 3D models. Two main vertical and one horizontal fracture sets were identified. They correspond respectively to alpine shear zones and veins opened-up during long-term exhumation of the Mont Blanc massif. Our study confirms that climate primarily controls rockfall occurrence, and that structural settings, coincident at both the massif and the rock wall scales, control the rock-wall shapes as well as the geometry and volume of the rockfall events. © 2020 John Wiley & Sons, Ltd.  相似文献   
142.
Glaciers are major agents of erosion that increase sediment load to the downstream fluvial system. The Castle Creek Glacier, British Columbia, Canada, has retreated ~1.0 km in the past 70 years. Suspended sediment concentration (SSC) and streamflow (Q) were monitored independently at five sites within its pro‐glacial zone over a 60 day period from July to September 2011, representing part of the ablation season. Meteorological data were collected from two automatic weather stations proximal to the glacier. The time‐series were divided into hydrologic days and the shape and magnitude of the SSC response to hydro‐meteorological conditions (‘cold and wet’, ‘hot and dry’, ‘warm and damp’, and ‘storm’) were categorized using principal component analysis (PCA) and cluster analysis (CA). Suspended sediment load (SSL) was computed and summarized for the categories. The distribution of monitoring sites and results of the multivariate statistical analyses describe the temporal and spatial variability of suspended sediment flux and the relative importance of glacial and para‐glacial sediment sources in the pro‐glacial zone. During the 2011 study period, ~ 60% of the total SSL was derived from the glacial stream and sediment deposits proximal to the terminus of the glacier; during ‘storm’ events, that contribution dropped to ~40% as the contribution from diffuse and point sources of sediment throughout the pro‐glacial zone and within the meltwater channels increased. While ‘storm’ events accounted for just 3% of the study period, SSL was ~600% higher than the average over the monitoring period, and ~20% of the total SSL was generated in that time. Determining how hydro‐meteorological conditions and sediment sources control sediment fluxes will assist attempts to predict how pro‐glacial zones respond to future climate changes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
143.
Concentrations of polycyclic aromatic hydrocarbons were determined in species of commercial fish and lobsters following an oil-spill just off the protected Madagascan coastline. Samples were collected along the coastline within and outside the affected area. Summed PAH concentrations ranged from 1.9 μg kg−1 to 63 μg kg−1 wet weight, but with no higher molecular weight PAHs (>202 Da) being detected. All concentrations of benzo[a]pyrene, benz[a]anthracene and dibenz[a,h]anthracene were <0.1 μg kg−1 wet weight, well within the EU and UK set limits for the protection of human health. Additionally, samples were calculated as the benzo[a]pyrene toxic equivalency quotient (TEQ) and found to be well below the level of concern in relation to health of human consumers. Evaluation of the biota PAH data indicated the origin of PAH was predominantly petrogenic with >80% arising from oil sources. Profile studies indicate a low-level multisource petrogenic contamination probably representing a pre-spill background for the area.  相似文献   
144.
The existence of detachment surfaces or décollement zones beneath folded rocks of the Valley and Ridge and Plateau provinces of the Appalachians has been recognized as an important condition of folding. Large folds at the border between the two provinces resulted primarily from repetition of strata by thrusting of blocks over ramp faults that connect detachement surfaces at different horizons. Some investigators have suggested that folds in the Plateau province of Pennsylvania were produced by splay faults arising from detachment surfaces, but field observations and theoretical analyses by Sherwin and by Wiltschko & Chapple suggest that the folds are a result of buckling of multilayered rocks above a décollement. An exception may be the Burning Springs anticline in West Virginia, which appears to have formed at the termination of a detachment surface.Investigation of the translation of an homogenous, viscous material above a flat detachment surface that terminates laterally indicates that the termination produces a broad, low-amplitude anticline in passive layering as a result of thickening induced by a gradient of shear stresses in the vertical direction. This thickening above the termination of a detachment is a mechanism of folding. If the viscous fluid contained mechanical layering, the fold would become amplified by buckling. Computations of stresses in the material indicate that minor faults should be generated first near the termination of the flat detachment surface. The Burning Springs anticline probably was initiated by termination of a detachment surface and subsequently amplified by buckling.  相似文献   
145.
Six major groups of trilobites from the Silurian and Devonian of Japan are evaluated for their paleobiogeographical signature. Silurian illaenids and scutelluids show four generic‐level and at least two species‐level links with the Australian segment of the Gondwana paleocontinent; encrinurids also indicate two generic‐level links with Australia and also the South China paleocontinent; whilst Devonian phacopids, and possibly proetids, suggest at least two generic‐level links with the North China paleocontinent. These different patterns may reflect the fragmentary biostratigraphical record of Japanese trilobites, but they also appear to reflect paleoenvironmental parameters associated with lithofacies, and paleoecology. Thus, Japanese assemblages of proetids and phacopids occurring in deep‐water clastic lithofacies have counterparts in similar settings in North China, and Japanese scutelluids and illaenids are strongly associated with shallow marine carbonate lithofacies that are similar to those of their occurrences in Australia. Japanese encrinurids occur in carbonate rocks indicative of shallow marine settings in the Kurosegawa Terrane, and they demonstrate a consistent paleobiogeographical affinity with Australia and South China. Larval ecology cannot be directly assessed for Japanese trilobite groups. However, proetids have consistently been shown to have planktonic protaspides, whereas illaenids, scutelluids, and encrinurids have benthic protaspides. Planktonic protaspides would have a greater propensity for distribution in ocean currents than benthic ones, and therefore may be of more limited paleobiogeographical utility. The combined data from the six different groups indicates that the complex paleobiogeographical patterns of the Japanese trilobite assemblages need to be interpreted with caution, and similarity of taxa does not necessarily denote paleogeographical proximity to other regions.  相似文献   
146.
We investigate the spatial and temporal englacial and subglacial processes associated with a temperate glacier resting on a deformable bed using the unique Glacsweb wireless in situ probes (embedded in the ice and the till) combined with other techniques [including ground penetrating radar (GPR) and borehole analysis]. During the melt season (spring, summer and autumn), high surface melt leads to high water pressures in the englacial and subglacial environment. Winter is characterized by no surface melting on most days (‘base’) apart from a series of positive degree days. Once winter begins, a diurnal water pressure cycle is established in the ice and at the ice/sediment interface, with direct meltwater inputs from the positive degree days and a secondary slower englacial pathway with a five day lag. This direct surface melt also drives water pressure changes in the till. Till deformation occurred throughout the year, with the winter rate approximately 60% that of the melt season. We were able to show the bed comprised patches of till with different strengths, and were able to estimate their size, relative percentage and temporal stability. We show that the melt season is characterized by a high pressure distributed system, and winter by a low pressure channelized system. We contrast this with studies from Greenland (overlying rigid bedrock), where the opposite was found. We argue our results are typical of soft bedded glaciers with low englacial water content, and suggest this type of glacier can rapidly respond to surface-driven melt. Based on theoretical and field results we suggest that the subglacial hydrology comprises a melt season distributed system dominated by wide anastomosing broad flat channels and thin water sheets, which may become more channelized in winter, and more responsive to changes in meltwater inputs. © 2019 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   
147.
Estimates of spatial and temporal variations in suspended sand concentrations (SSC) made with a multi-transducer Acoustic Backscatter Sensor (ABS) under a repeated wave group over a mobile rippled bed in the wave research flume at the National Hydraulics Laboratory in Ottawa, Canada, reveal an number of complex and intriguing patterns. Ensemble averages of 8 nearly identical wave groups provided much more robust estimates of SSC and allowed a detailed examination of the wave group effects. The largest SSC near the bed (< 0.10 m) occurs in phase with the largest waves in the group. Above approximately 0.10 m elevation, SSC lags behind the near bed SSC by as much as 2–3 waves; introducing significant curvature (on a semi-log plot) to the SSC profile. The log linear segments of the SSC profile grow and decay systematically on the scale of the wave group. The range in lengths of log-linear profile segments ( 0.03–0.355 m) suggest that the boundary layer thickness also fluctuates throughout the passage of the wave group. Furthermore, there are significant variations in the patterns of SSC, which occur under the largest and smallest waves in the group. Under the largest waves vertical bands of alternating high and low SSC produce an intra-wave modulation in the upper water column ( 0.075–0.30 m). The equivalent horizontal excursion of these bands scales to the ripple length. Under the smaller waves the intra-wave modulation of the SSC disappears and is replaced by temporally homogenous suspension that expands vertically through several individual wave cycles. The former pattern of homogenous suspension appears to be associated with growth of a boundary layer due to the persistent uni-directional horizontal flow during this part of the group together with the persistence of antecedent bed generated turbulence and vorticity which maintains the suspension. The latter pattern of bands of high and low SSC indicates a strong temporal and spatial constraint on the SSC (phase coupling) induced by the presence of the bedforms which may be enhanced by strong reversals in both flow and vorticity under the large waves in the group.  相似文献   
148.
Relationships were examined between variability in tropical Atlantic sea level and major climate indices with the use of TOPEX/POSEIDON altimeter and island tide gauge data with the aim of learning more about the external influences on the variability of the tropical Atlantic ocean. Possible important connections were found between indices related to the El Niño–Southern Oscillation (ENSO) and the sea levels in all three tropical regions (north, equatorial, and south), although the existence of only one major ENSO event within the decade of available altimetry means that a more complete investigation of the ENSO-dependence of Atlantic sea level changes has to await for the compilation of longer data sets. An additional link was found with the Indian Ocean Dipole (IOD) in the equatorial region, this perhaps surprising observation is probably an artifact of the similarity between IOD and ENSO time series in the 1990s. No evidence was obtained for significant correlations between tropical Atlantic sea level and North Atlantic Oscillation or Antarctic Oscillation Index. The most intriguing relationship observed was between the Quasi-Biennial Oscillation and sea level in a band centered approximately on 10°S. A plausible explanation for the relationship is lacking, but possibilities for further research are suggested.  相似文献   
149.
150.
Active deposition across the floodplains of large rivers arises through a variety of processes; collectively these are here termed ‘spillage sedimentation’. Three groups of 11 spillage sedimentation styles are identified and their formative processes described. Form presences on large river floodplains show different combinations of active spillage styles. Only some large floodplains have prominent levees; some have coarse splays; many have accessory channel dispersion and reworking, while still‐water sedimentation in lacustrine environments dominates some lower reaches. Infills are also commonly funnelled into prior, and often linear, negative relief forms relating to former migration within the mainstream channel belt. Shuttle Radar Topography Mission (SRTM) and Landsat 8 data are used to map spillage form types and coverage along a 1700 km reach of the Amazon that has an active floodplain width of up to 110 km with a systematic character transformation down‐valley. Spillage forms associated directly with mainstream processes rarely account for more than 5% of the floodplain deposits. There is a marked decrease in floodplain point bar complexes (PBC) over 1700 km downstream (from 34% to 5%), and an increase in the prevalence of large water bodies (2% to 37%) and accompanying internal crevasses and deltas (0% to 5%). Spillage sedimentation is likely within the negative relief associated with these forms, depending on mainstream sediment‐laden floodwater inputs. Spillage style dominance depends on the balance between sediment loadings, hydrological sequencing, and morphological opportunity. Down‐river form sequences are likely to follow gradient change, prior up‐river sediment sequestration and the altered nature of spilled loads, but also crucially, local floodplain relief and incident water levels and velocities at spillage times. Considering style distribution quantitatively, as a spatially distributed set of identifiable forms, emphasizes the global variety to spillage phenomena along and between large rivers. © 2016 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号