全文获取类型
收费全文 | 34209篇 |
免费 | 666篇 |
国内免费 | 373篇 |
专业分类
测绘学 | 1025篇 |
大气科学 | 2400篇 |
地球物理 | 8202篇 |
地质学 | 11552篇 |
海洋学 | 2616篇 |
天文学 | 7659篇 |
综合类 | 109篇 |
自然地理 | 1685篇 |
出版年
2021年 | 354篇 |
2020年 | 400篇 |
2019年 | 422篇 |
2018年 | 968篇 |
2017年 | 924篇 |
2016年 | 1223篇 |
2015年 | 762篇 |
2014年 | 1103篇 |
2013年 | 1831篇 |
2012年 | 1245篇 |
2011年 | 1430篇 |
2010年 | 1325篇 |
2009年 | 1604篇 |
2008年 | 1421篇 |
2007年 | 1406篇 |
2006年 | 1355篇 |
2005年 | 1034篇 |
2004年 | 1031篇 |
2003年 | 948篇 |
2002年 | 932篇 |
2001年 | 802篇 |
2000年 | 791篇 |
1999年 | 660篇 |
1998年 | 684篇 |
1997年 | 637篇 |
1996年 | 470篇 |
1995年 | 499篇 |
1994年 | 518篇 |
1993年 | 393篇 |
1992年 | 381篇 |
1991年 | 335篇 |
1990年 | 399篇 |
1989年 | 348篇 |
1988年 | 311篇 |
1987年 | 345篇 |
1986年 | 302篇 |
1985年 | 392篇 |
1984年 | 403篇 |
1983年 | 402篇 |
1982年 | 392篇 |
1981年 | 319篇 |
1980年 | 333篇 |
1979年 | 285篇 |
1978年 | 282篇 |
1977年 | 279篇 |
1976年 | 233篇 |
1975年 | 258篇 |
1974年 | 233篇 |
1973年 | 238篇 |
1972年 | 176篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
The geometry and the accuracy of the 3-D cartographic localization of RADARSAT-2 images are being evaluated as part of the Canadian Space Agency's Science and Operational Applications Research program. In a first step, the Toutin's 3-D physical model, previously developed for RADARSAT-1, was adapted to RADARSAT-2 sensor and applied to two ultrafine mode images (U2 and U25) acquired over an area in Beauport, Quebec. Both the 3-D modeling computed with only 12 ground control points and its geometric localization were evaluated with different check data: 1) independent check points; 2) the two quasi-epipolar images; 3) the two orthoimages; and 4) 1-m accurate orthophotos. All four results and validations are in agreement and confirm that the 3-D geometric localization and restitution accuracy are 1 m in planimetry and 2 m in elevation. The checked data error being included in these evaluations and the relative error computed from the quasi-epipolar comparison provided a high level of confidence that the precision of Toutin's 3-D radargrammetric model is better than 0.25 m. 相似文献
72.
In an elementary approach every geometrical height difference between the staff points of a levelling line should have a corresponding
average g value for the determination of potential difference in the Earth’s gravity field. In practice this condition requires as
many gravity data as the number of staff points if linear variation of g is assumed between them. Because of the expensive fieldwork, the necessary data should be supplied from different sources.
This study proposes an alternative solution, which is proved at a test bed located in the Mecsek Mountains, Southwest Hungary,
where a detailed gravity survey, as dense as the staff point density (~1 point/34 m), is available along a 4.3-km-long levelling
line. In the first part of the paper the effect of point density of gravity data on the accuracy of potential difference is
investigated. The average g value is simply derived from two neighbouring g measurements along the levelling line, which are incrementally decimated in the consecutive turns of processing. The results
show that the error of the potential difference between the endpoints of the line exceeds 0.1 mm in terms of length unit if
the sampling distance is greater than 2 km. Thereafter, a suitable method for the densification of the decimated g measurements is provided. It is based on forward gravity modelling utilising a high-resolution digital terrain model, the
normal gravity and the complete Bouguer anomalies. The test shows that the error is only in the order of 10−3mm even if the sampling distance of g measurements is 4 km. As a component of the error sources of levelling, the ambiguity of the levelled height difference which
is the Euclidean distance between the inclined equipotential surfaces is also investigated. Although its effect accumulated
along the test line is almost zero, it reaches 0.15 mm in a 1-km-long intermediate section of the line. 相似文献
73.
74.
The purpose of this paper is the canonical connection of classical global gravity field determination following the concept of Stokes (Trans Camb Philos Soc 8:672–712, 1849), Bruns (Die Figur der Erde, Publikation Königl. Preussisch. Geodätisches Institut, P. Stankiewicz Buchdruckerei, Berlin, 1878), and Neumann (Vorlesungen über die Theorie des Potentials und der Kugelfunktionen. Teubner, Leipzig, pp 135–154, 1887) on the one hand and modern locally oriented multiscale computation by use of adaptive locally supported wavelets on the other hand. The essential tools are regularization methods of the Green, Neumann, and Stokes integral representations. The multiscale approximation is guaranteed simply as linear difference scheme by use of Green, Neumann, and Stokes wavelets. As an application, gravity anomalies caused by plumes are investigated for the Hawaiian and Iceland areas. 相似文献
75.
Sean P Healey Jock A Blackard Todd A Morgan Dan Loeffler Greg Jones Jon Songster Jason P Brandt Gretchen G Moisen Larry T DeBlander 《Carbon balance and management》2009,4(1):9
Background
Although significant amounts of carbon may be stored in harvested wood products, the extraction of that carbon from the forest generally entails combustion of fossil fuels. The transport of timber from the forest to primary milling facilities may in particular create emissions that reduce the net sequestration value of product carbon storage. However, attempts to quantify the effects of transport on the net effects of forest management typically use relatively sparse survey data to determine transportation emission factors. We developed an approach for systematically determining transport emissions using: 1) -remotely sensed maps to estimate the spatial distribution of harvests, and 2) - industry data to determine landscape-level harvest volumes as well as the location and processing totals of individual mills. These data support spatial network analysis that can produce estimates of fossil carbon released in timber transport. 相似文献76.
Rigorous equations in compact symbolic matrix notation are introduced to transform coordinates and velocities between ITRF
frames and modern GPS-based geocentric geodetic datums. The theory is general but, after neglecting higher than second-order
terms, it is shown that the equations revert to the formulation currently applied in most major continental datums. We discuss
several examples: the North American Datum of 1983 (NAD83), the European Terrestrial Reference System of 1989 (ETRS89), the Geodetic Datum of Australia of 1994 (GDA94), and the South American Geocentric Reference System (SIRGAS).
Electronic Publication 相似文献
77.
Integral transformations of gravitational gradients onto a Gravity Recovery And Climate Experiment (GRACE) type of observable are derived in this article. The gravitational gradients represent components of the gravitational tensor in the local north-oriented frame. The GRACE type of observable corresponds to a difference between two gravitational vectors as projected onto the line of sight between the two GRACE satellites. In total, three integral transformations relating vertical–vertical, vertical–horizontal and horizontal–horizontal gravitational gradients with the GRACE type of observable are provided. Spectral and closed forms of corresponding isotropic kernels are derived for each transformation. Special cases show that the integral transformations are general and relate gravitational gradients to many other quantities of the gravitational field, such as the gravitational vector, and its radial and tangential components. Correctness of the mathematical derivations is validated in a closed-loop simulation using synthetic data. 相似文献
78.
79.
We present the new MAP3 algorithms to perform static precise point positioning (PPP) from multifrequency and multisystem GNSS observations. MAP3 represents a two-step strategy in which the least squares theory is applied twice to estimate smoothed pseudo-distances, initial phase ambiguities, and slant ionospheric delay first, and the absolute receiver position and its clock offset in a second adjustment. Unlike the classic PPP technique, in our new approach, the ionospheric-free linear combination is not used. The combination of signals from different satellite systems is accomplished by taking into account the receiver inter-system bias. MAP3 has been implemented in MATLAB and integrated within a complete PPP software developed on site and named PCube. We test the MAP3 performance numerically and contrast it with other external PPP programs. In general, MAP3 positioning accuracy with low-noise GPS dual-frequency observations is about 2.5 cm in 2-h observation periods, 1 cm in 10 h, and 7 mm after 1 day. This means an improvement in the accuracy in short observation periods of at least 7 mm with respect to the other PPP programs. The MAP3 convergence time is also analyzed and some results obtained from real triple-frequency GPS and GIOVE observations are presented. 相似文献
80.
Use of the L2C signal for inversions of GPS radio occultation data in the neutral atmosphere 总被引:1,自引:0,他引:1
S. V. Sokolovskiy W. S. Schreiner Z. Zeng D. C. Hunt Y.-H. Kuo T. K. Meehan T. W. Stecheson A. J. Mannucci C. O. Ao 《GPS Solutions》2014,18(3):405-416
Results from processing FORMOSAT-3/COSMIC radio occultations (RO) with the new GPS L2C signal acquired both in phase locked loop (PLL) and open loop (OL) modes are presented. Analysis of L2P, L2C, and L1CA signals acquired in PLL mode shows that in the presence of strong ionospheric scintillation not only L2P tracking, but also L1CA tracking often fails, while L2C tracking is most stable. The use of L2C improves current RO processing in the neutral atmosphere mainly by increasing the number of processed occultations (due to significant reduction in the number of L2 tracking failures) and marginally by a reduction in noise in statistics. The latter is due to the combination of reduced L2C noise (compared to L2P) and increased L1CA noise in those occultations where L2P would have failed. This result suggests application of OL tracking for L1CA and L2C signals throughout an entire occultation to optimally acquire RO data. Two methods of concurrent processing of L1CA and L2C RO signals are considered. Based on testing of individual occultations, these methods allow: (1) reduction in uncertainty of bending angles retrieved by wave optics in the lower troposphere and (2) reduction in small-scale residual errors of the ionospheric correction in the stratosphere. 相似文献