首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34209篇
  免费   666篇
  国内免费   373篇
测绘学   1025篇
大气科学   2400篇
地球物理   8202篇
地质学   11552篇
海洋学   2616篇
天文学   7659篇
综合类   109篇
自然地理   1685篇
  2021年   354篇
  2020年   400篇
  2019年   422篇
  2018年   968篇
  2017年   924篇
  2016年   1223篇
  2015年   762篇
  2014年   1103篇
  2013年   1831篇
  2012年   1245篇
  2011年   1430篇
  2010年   1325篇
  2009年   1604篇
  2008年   1421篇
  2007年   1406篇
  2006年   1355篇
  2005年   1034篇
  2004年   1031篇
  2003年   948篇
  2002年   932篇
  2001年   802篇
  2000年   791篇
  1999年   660篇
  1998年   684篇
  1997年   637篇
  1996年   470篇
  1995年   499篇
  1994年   518篇
  1993年   393篇
  1992年   381篇
  1991年   335篇
  1990年   399篇
  1989年   348篇
  1988年   311篇
  1987年   345篇
  1986年   302篇
  1985年   392篇
  1984年   403篇
  1983年   402篇
  1982年   392篇
  1981年   319篇
  1980年   333篇
  1979年   285篇
  1978年   282篇
  1977年   279篇
  1976年   233篇
  1975年   258篇
  1974年   233篇
  1973年   238篇
  1972年   176篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
The geometry and the accuracy of the 3-D cartographic localization of RADARSAT-2 images are being evaluated as part of the Canadian Space Agency's Science and Operational Applications Research program. In a first step, the Toutin's 3-D physical model, previously developed for RADARSAT-1, was adapted to RADARSAT-2 sensor and applied to two ultrafine mode images (U2 and U25) acquired over an area in Beauport, Quebec. Both the 3-D modeling computed with only 12 ground control points and its geometric localization were evaluated with different check data: 1) independent check points; 2) the two quasi-epipolar images; 3) the two orthoimages; and 4) 1-m accurate orthophotos. All four results and validations are in agreement and confirm that the 3-D geometric localization and restitution accuracy are 1 m in planimetry and 2 m in elevation. The checked data error being included in these evaluations and the relative error computed from the quasi-epipolar comparison provided a high level of confidence that the precision of Toutin's 3-D radargrammetric model is better than 0.25 m.  相似文献   
72.
In an elementary approach every geometrical height difference between the staff points of a levelling line should have a corresponding average g value for the determination of potential difference in the Earth’s gravity field. In practice this condition requires as many gravity data as the number of staff points if linear variation of g is assumed between them. Because of the expensive fieldwork, the necessary data should be supplied from different sources. This study proposes an alternative solution, which is proved at a test bed located in the Mecsek Mountains, Southwest Hungary, where a detailed gravity survey, as dense as the staff point density (~1 point/34 m), is available along a 4.3-km-long levelling line. In the first part of the paper the effect of point density of gravity data on the accuracy of potential difference is investigated. The average g value is simply derived from two neighbouring g measurements along the levelling line, which are incrementally decimated in the consecutive turns of processing. The results show that the error of the potential difference between the endpoints of the line exceeds 0.1 mm in terms of length unit if the sampling distance is greater than 2 km. Thereafter, a suitable method for the densification of the decimated g measurements is provided. It is based on forward gravity modelling utilising a high-resolution digital terrain model, the normal gravity and the complete Bouguer anomalies. The test shows that the error is only in the order of 10−3mm even if the sampling distance of g measurements is 4 km. As a component of the error sources of levelling, the ambiguity of the levelled height difference which is the Euclidean distance between the inclined equipotential surfaces is also investigated. Although its effect accumulated along the test line is almost zero, it reaches 0.15 mm in a 1-km-long intermediate section of the line.  相似文献   
73.
74.
The purpose of this paper is the canonical connection of classical global gravity field determination following the concept of Stokes (Trans Camb Philos Soc 8:672–712, 1849), Bruns (Die Figur der Erde, Publikation Königl. Preussisch. Geodätisches Institut, P. Stankiewicz Buchdruckerei, Berlin, 1878), and Neumann (Vorlesungen über die Theorie des Potentials und der Kugelfunktionen. Teubner, Leipzig, pp 135–154, 1887) on the one hand and modern locally oriented multiscale computation by use of adaptive locally supported wavelets on the other hand. The essential tools are regularization methods of the Green, Neumann, and Stokes integral representations. The multiscale approximation is guaranteed simply as linear difference scheme by use of Green, Neumann, and Stokes wavelets. As an application, gravity anomalies caused by plumes are investigated for the Hawaiian and Iceland areas.  相似文献   
75.

Background  

Although significant amounts of carbon may be stored in harvested wood products, the extraction of that carbon from the forest generally entails combustion of fossil fuels. The transport of timber from the forest to primary milling facilities may in particular create emissions that reduce the net sequestration value of product carbon storage. However, attempts to quantify the effects of transport on the net effects of forest management typically use relatively sparse survey data to determine transportation emission factors. We developed an approach for systematically determining transport emissions using: 1) -remotely sensed maps to estimate the spatial distribution of harvests, and 2) - industry data to determine landscape-level harvest volumes as well as the location and processing totals of individual mills. These data support spatial network analysis that can produce estimates of fossil carbon released in timber transport.  相似文献   
76.
A note on frame transformations with applications to geodetic datums   总被引:1,自引:0,他引:1  
Rigorous equations in compact symbolic matrix notation are introduced to transform coordinates and velocities between ITRF frames and modern GPS-based geocentric geodetic datums. The theory is general but, after neglecting higher than second-order terms, it is shown that the equations revert to the formulation currently applied in most major continental datums. We discuss several examples: the North American Datum of 1983 (NAD83), the European Terrestrial Reference System of 1989 (ETRS89), the Geodetic Datum of Australia of 1994 (GDA94), and the South American Geocentric Reference System (SIRGAS). Electronic Publication  相似文献   
77.
Integral transformations of gravitational gradients onto a Gravity Recovery And Climate Experiment (GRACE) type of observable are derived in this article. The gravitational gradients represent components of the gravitational tensor in the local north-oriented frame. The GRACE type of observable corresponds to a difference between two gravitational vectors as projected onto the line of sight between the two GRACE satellites. In total, three integral transformations relating vertical–vertical, vertical–horizontal and horizontal–horizontal gravitational gradients with the GRACE type of observable are provided. Spectral and closed forms of corresponding isotropic kernels are derived for each transformation. Special cases show that the integral transformations are general and relate gravitational gradients to many other quantities of the gravitational field, such as the gravitational vector, and its radial and tangential components. Correctness of the mathematical derivations is validated in a closed-loop simulation using synthetic data.  相似文献   
78.
IAG Newsletter     
  相似文献   
79.
We present the new MAP3 algorithms to perform static precise point positioning (PPP) from multifrequency and multisystem GNSS observations. MAP3 represents a two-step strategy in which the least squares theory is applied twice to estimate smoothed pseudo-distances, initial phase ambiguities, and slant ionospheric delay first, and the absolute receiver position and its clock offset in a second adjustment. Unlike the classic PPP technique, in our new approach, the ionospheric-free linear combination is not used. The combination of signals from different satellite systems is accomplished by taking into account the receiver inter-system bias. MAP3 has been implemented in MATLAB and integrated within a complete PPP software developed on site and named PCube. We test the MAP3 performance numerically and contrast it with other external PPP programs. In general, MAP3 positioning accuracy with low-noise GPS dual-frequency observations is about 2.5 cm in 2-h observation periods, 1 cm in 10 h, and 7 mm after 1 day. This means an improvement in the accuracy in short observation periods of at least 7 mm with respect to the other PPP programs. The MAP3 convergence time is also analyzed and some results obtained from real triple-frequency GPS and GIOVE observations are presented.  相似文献   
80.
Results from processing FORMOSAT-3/COSMIC radio occultations (RO) with the new GPS L2C signal acquired both in phase locked loop (PLL) and open loop (OL) modes are presented. Analysis of L2P, L2C, and L1CA signals acquired in PLL mode shows that in the presence of strong ionospheric scintillation not only L2P tracking, but also L1CA tracking often fails, while L2C tracking is most stable. The use of L2C improves current RO processing in the neutral atmosphere mainly by increasing the number of processed occultations (due to significant reduction in the number of L2 tracking failures) and marginally by a reduction in noise in statistics. The latter is due to the combination of reduced L2C noise (compared to L2P) and increased L1CA noise in those occultations where L2P would have failed. This result suggests application of OL tracking for L1CA and L2C signals throughout an entire occultation to optimally acquire RO data. Two methods of concurrent processing of L1CA and L2C RO signals are considered. Based on testing of individual occultations, these methods allow: (1) reduction in uncertainty of bending angles retrieved by wave optics in the lower troposphere and (2) reduction in small-scale residual errors of the ionospheric correction in the stratosphere.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号