首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13100篇
  免费   1227篇
  国内免费   780篇
测绘学   571篇
大气科学   1440篇
地球物理   4652篇
地质学   5152篇
海洋学   775篇
天文学   1294篇
综合类   489篇
自然地理   734篇
  2023年   49篇
  2022年   148篇
  2021年   232篇
  2020年   194篇
  2019年   179篇
  2018年   783篇
  2017年   676篇
  2016年   695篇
  2015年   511篇
  2014年   537篇
  2013年   571篇
  2012年   1025篇
  2011年   801篇
  2010年   487篇
  2009年   458篇
  2008年   438篇
  2007年   432篇
  2006年   382篇
  2005年   1041篇
  2004年   1068篇
  2003年   848篇
  2002年   375篇
  2001年   269篇
  2000年   213篇
  1999年   230篇
  1998年   173篇
  1997年   184篇
  1996年   161篇
  1995年   140篇
  1994年   126篇
  1993年   116篇
  1992年   111篇
  1991年   87篇
  1990年   107篇
  1989年   88篇
  1988年   57篇
  1987年   68篇
  1986年   61篇
  1985年   53篇
  1984年   55篇
  1983年   49篇
  1982年   63篇
  1981年   47篇
  1980年   51篇
  1979年   48篇
  1978年   50篇
  1976年   42篇
  1975年   46篇
  1973年   45篇
  1971年   51篇
排序方式: 共有10000条查询结果,搜索用时 781 毫秒
141.
罗会邦  陈蓉 《气象科学》1995,15(4):17-29
本文总结了“青藏高原大地形及西太平洋暖池势力强迫对东亚及全球气候变化的影响”专题五年来的主要研究工作。其中包括青世故高原东部大气热源的时间演变特征,夏半年高原热源异常对我国降水和北半球环流的影响;西沙海温变化特征及其与我南方降水的关系,北太平洋海温主因子特征及其与华南前汛期降水的变化。  相似文献   
142.
The Mariánské Lázn complex (MLC) is located in the Bohemian Massif along the north-western margin of the Teplá-Barrandian microplate and consists of metagabbro, amphibolite and eclogite, with subordinate amounts of serpentinite, felsic gneiss and calcsilicate rocks. The MLC is interpreted as a metaophiolite complex that marks the suture zone between the Saxothuringian rocks to the north-west and the Teplá-Barrandian microplate to the south-east. Sm-Nd geochronology of garnet-omphacite pairs from two eclogite samples yields ages of 377±7, and 367±4 Ma. Samples of eclogite and amphibolite do not define a whole rock Sm-Nd isochron, even though there is a large range in Sm/Nd ratio, implying that the suite of samples may not be cogenetic. Eclogites do not have correlated Nd values and initial 87Sr/86Sr ratios. Five of the eight eclogite samples have high Nd values (+10.2 to +7.1) consistent with derivation from a MORB-like source, but variable 87Sr/86Sr ratios (0.7033 to 0.7059) which probably reflect hydrothermal seawater alteration. Three other eclogite samples have lower Nd values (+ 5.4 to –0.8) and widely variable 87Sr/86Sr ratios (0.7033 to 0.7096). Such low Nd values are inconsistent with derivation from a MORB, source and may reflect a subduction or oceanic island basalt component in their source. The MLC is an important petrotectonic element in the Bohemian Massif, providing evidence for Cambro-Ordovician formation of oceanic crust and interaction with seawater, Late Devonian (Frasnian-Famennian) high- and medium-pressure metamorphism related to closure of a Saxothuringian ocean basin, Early Carboniferous (Viséan) thrusting of the Teplá terrane over Saxothuringian rocks and Late Viséan extension.  相似文献   
143.
The Solar Flare Myth postulated by Gosling (1993) is a misunderstanding. It is true that most sources of coronal mass ejections (CMEs) cannot be classified as flares in the common old sense of that word. However, just for this reason the term eruptive flare has been introduced for all solar active phenomena in which an opening of field lines is involved and which lead to magnetic-field and mass ejections resulting in a CME. The process is essentially the same in all events, irrespective of' whether only adisparition brusque without any chromospheric brightening or a major two-ribbon flare is involved in it; the only difference is the different strength of the magnetic field in which the process was accomplished. The major two-ribbon (cosmic-ray) flares clearly represent the most energetic events of this kind, and, therefore, it is very misleading to claim that solar flares in general are phenomena with very little importance for solar-terrestrial physics.  相似文献   
144.
If the solar system is considered as a mechanical clockwork consisting of its present members which attract each other as mass-points, the extent of its present approach to secular stability (i.e., the state of minimum potential energy) — manifested by the existence of a number of nearcommensurabilities of the present orbital periods, not only of the planets, but also of their satellites —could not have been attained in a time-span of 4.6×109 yr of its age by gravitational perturbations alone.The existence of such commensurabilities — striking in many instances— could then be understood only on the assumption that either (a) the solar system was actually born with the present 2-, 3- and 4-term couplings between the orbital period of the planets already built-in from the outset (which is improbable on any known grounds); or (b) that these couplings — in particular, the 25 Jupiter-Saturn commensurability — have arisen as a result of tidal interaction between proto-planetary globes of much larger dimensions than these planets possess today. For the present dimensions and mutual distances of these planets, their tidal interaction in 109 yr would exert but negligible effects; and during that time neither their masses, nor the scale of the solar system underwent any essential change.Therefore, a hypothesis is proposed that the situation now obtaining had its origin in the early days of the formation of the solar system, when the planetary globes — in particular, those of Jupiter and Saturn (now in the terminal stage of Kelvin contraction) — were very much larger than they are today; and when, as a result, the tidal coupling between them operated at a much higher rate than at the present time.Paper presented at the European Workshop on Planetary Sciences, organised by the Laboratorio di Astrofisica Spaziale di Frascati, and held between April 23–27, 1979, at the Accademia Nazionale del Lincei in Rome, Italy.  相似文献   
145.
Summary The Banach theorem is applied to the Lagrange planetary equation for the semimajor axis of a geostationary satellite orbit to estimate the stability of near-geostationary satellite orbits. To achieve a graveyard (disposal) orbit, which will not interfere (=cross) the initial geostationary orbit, the geostationary semi-major axis ag have to be increased at least by 50 km. Numerical results for a variety of graveyard orbits show that the increase of ag by about 100 km will yield sufficiently stable orbits (accounting for the Earth's gravitational perturbations only) during the next 150 years.Dedicated to the 75th Birthday of Professor Academician Tibor Kolbenheyer  相似文献   
146.
Summary The method of the automated computation of the gravimetric deflections of the vertical and of the geoidal heights for the European region is described. The work was carried out during the period 1986–1988 by the Topographic Service of the Czechoslovak Army. The computation applies to 20 sheets of the international map 1:1 000 000 (total area of =16c, =30c - see Fig. 1). The mean values of the free-air anomalies for each surface element =5, =7.5, approximately 9 × 9 km, were used with radius of integration of 300 km.  相似文献   
147.
Starting from the new flare models of Karlický (1990) and Karlický and Hénoux (1991), we present here the first time-dependent numerical simulations of hydrogen plasma excitation and ionization on time scales of less than one second. These time scales are consistent with the spiky behaviour of the kinetic temperature produced by non-thermal collisional processes. Such temperature spikes represent a chromospheric response to a series of short-duration electron beam pulses which are supposed to heat the flare atmosphere. Self-consistent numerical solution of a simplified, time-dependent, non-LTE problem for a three-level hydrogen atom model with continuum allows us to predict theoretically a qualitative behaviour of the H line intensity variations on very short time intervals. Our H temporal profiles, evaluated at the line center and for = 1 Å, can be qualitatively compared with some recent flare observations obtained with high temporal resolution.  相似文献   
148.
We study the evolution of solid, CO white dwarfs after explosive carbon ignition at central densities around 1010 g cm–3 triggered by steady accretion in a close binary system, in order to elucidate whether these stars can collapse to form a neutron star. We show that as long as the velocity of the burning front remains below a critical value of 0.006c s (60 km s–1), gravitational collapse is the final fate. These calculations support the accretion-induced collapse (AIC) scenario for the origin of a fraction of low-mass X-ray binaries.Paper presented at the 11th European Regional Astronomical Meetings of the IAU on New Windows to the Universe, held 3–8 July, 1989, Tenerife, Canary Islands, Spain.  相似文献   
149.
In the five last years, different structures (density excess 1) have been proposed as the direct cause of our infall toward the direction of Hydra—Centaurus with a velocity of 500 km s–1. The direct effect of the mentioned matter accumulations on the X-ray background (XRB) can be estimated as a function of the geometry of the structures and of the cosmological evolution of the sources emitting in the X-ray band (2–10 keV) for different universes (01). If the XRB comes mostly from AGNs with low luminosity (L X <1043 erg s–1 and, therefore, they will have a weak cosmological evolution) and we consider the difference between the intensities coming from both hemispheres (that oriented toward the direction of our motion and the opposite one) obtained by means of different satellites, we can conclude that some candidates are highly unlikely.Paper presented at the 11th European Regional Astronomical Meetings of the IAU on New Windows to the Universe, held 3–8 July, 1989, Tenerife, Canary Islands, Spain  相似文献   
150.
The main shock of the West-Bohemian earthquake swarm, Czechoslovakia, (magnitudem=4.5, depthh=10 km) exhibits an irregular areal distribution of macroseismic intensities 6° to 7° MSK-64. Four lobes of the 6° isoseismal are found and the maximum observed intensity is located at a distance of 8 km from the instrumentally determined epicentre. This distribution can be explained by the energy flux of the directS wave generated by a circular source, the hypocentral location and focal mechanism of which are taken from independent instrumental studies. The theoretical intensity, which is assumed to be logarithmically proportional to the integrated squared ground-motion velocity (i.e.,I=const+log v 2 (t)dt), fits the observed intensity with an overall root-mean-square error less than 0.5°. It is important that the present intensity data can also be equally well explained by the isotropic source. The fit was attained by means of a horizontally layered model though large fault zones and an extended sedimentary basin suggest a significant lateral heterogeneity of the epicentral region. The results encourage a broader application of the simple modelling technique used.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号