首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   291篇
  免费   2篇
测绘学   8篇
大气科学   25篇
地球物理   44篇
地质学   95篇
海洋学   36篇
天文学   75篇
自然地理   10篇
  2021年   2篇
  2020年   3篇
  2019年   2篇
  2018年   5篇
  2017年   2篇
  2016年   5篇
  2015年   8篇
  2014年   7篇
  2013年   16篇
  2012年   11篇
  2011年   9篇
  2010年   11篇
  2009年   18篇
  2008年   14篇
  2007年   8篇
  2006年   5篇
  2005年   12篇
  2004年   19篇
  2003年   12篇
  2002年   12篇
  2001年   12篇
  2000年   6篇
  1999年   6篇
  1998年   2篇
  1997年   4篇
  1996年   3篇
  1994年   5篇
  1993年   5篇
  1991年   3篇
  1990年   4篇
  1989年   3篇
  1987年   4篇
  1986年   2篇
  1985年   3篇
  1984年   5篇
  1983年   5篇
  1982年   3篇
  1981年   5篇
  1980年   6篇
  1979年   3篇
  1977年   1篇
  1976年   3篇
  1975年   3篇
  1974年   2篇
  1973年   2篇
  1972年   2篇
  1971年   3篇
  1970年   1篇
  1969年   1篇
  1963年   1篇
排序方式: 共有293条查询结果,搜索用时 15 毫秒
251.
252.
Anomalous morphological features within large estuaries may be: (1) recorders of external forces that periodically overwhelm the normal morphodynamic responses to estuarine energy fluxes, and (2) possible predictors of cycles of future coastal change. At the entrance to Willapa Bay, Washington, chronic beach erosion and frequent coastal flooding are related to the historical northward channel migration that destroyed the protective sand spits of Cape Shoalwater. Northward channel migration since the late 1800s conforms to the long-term net sediment transport direction. What requires explanation is periodic southward relocation of the trunk channel by as much as 5 km, and attendant construction of moderately large sand spits on the north side of the bay such as Kindred Island, Tokeland Peninsula, and Cape Shoalwater.Both autocyclic and allocyclic processes may have been responsible for trunk channel realignment and associated spit deposition. Channel recycling may occur when the main channel becomes overextended to the north and the tidal flow is inefficient because of its decreased gradient and increased susceptibility to shoaling by the growth and migration of tidal sand ridges. Under those conditions trunk channel relocation would be facilitated by increased wave heights and water levels of El Niño winter storms. However, co-seismic subsidence is the most likely mechanism for abruptly increasing sand supply and longshore transport that would favor discrete periods of channel relocation and spit deposition. Unless external forcing changes sand supply and predominant sediment transport directions in the future, the relative rise in sea level, frequent winter storms, and local deficit in the sand budget assure that beach erosion will continue at the mouth of this large estuary.  相似文献   
253.
Recently it has been observed that a strong quantitative relationship exists between asymptotic fluxes of particulate organic carbon (POC) to the deep ocean and asymptotic fluxes of “ballast” minerals (opal; calcium carbonate; dust). It has further been suggested that this relationship might provide a mechanistic basis for improved representations of remineralization in ocean carbon models. Since the depth scale of remineralization z* is the ratio k/v of a remineralization rate k and a settling velocity (SV) v, a mechanistic understanding of settling velocities will be crucial in developing such models.Historically, there have been two approaches to estimating the speed with which POC is transported to the deep ocean. First, settling speeds of single particles have been observed directly in both field and laboratory settings; estimates of fecal pellet sinking velocities tend to be higher and more variable than those of aggregates. Second, estimates have been made of the velocity at which temporal patterns in flux propagate between pairs of sediment traps separated in depth (the “benchmark approach”); recent studies have shown these results to be variable and to depend on mineral ballasting. Here we present SV estimates using a relatively new technology: indented rotating sphere (IRS) sediment traps run in settling velocity (SV) mode. In this approach, particles are separated into SV classes during settling to collection cups. In MedFlux, SV data were collected concurrently with time-series (TS) data; the latter were used to construct benchmark estimates for comparison to the SV estimates. From the SV data, the range of modal settling velocities (sinking velocities having the largest time-averaged mass flux densities on a logarithmic scale of SV) in the fast-sinking fraction was estimated to be 287–503 m/d; the average of these modal values is 353 m/d, with standard deviation 76 m/d. In contrast, mean settling velocities of the fast-sinking fraction depend on the range of settling velocity classes included in the estimate. If only SV classes settling at >50 m/d are included, the range of SVs at MedFlux was 214–298 m/d, with average mean value 242 m/d and standard deviation 31 m/d. These mean-velocity results are in excellent agreement with benchmark estimates of signal propagation velocities at Medflux (220±65 m/d); they are also well within the range of other recent benchmark studies. The agreement between the benchmark estimates and mean settling velocity estimates at MedFlux, but not with modal velocities, argues that the benchmark method estimates mean settling velocities.  相似文献   
254.
Mesozooplankton abundance, community structure and copepod grazing on phytoplankton were examined during the austral spring 1997 and summer 1998 as part of the US JGOFS project in the Pacific sector of the Antarctic polar front. Mesozooplankton abundance and biomass were highest at the polar front and south of the front. Biomass increased by 1.5–2-times during the course of the study. Calanoides acutus, Calanus propinquus, C. simillimus, Rhincalanus gigas and Neocalanus tonsus were the dominant large copepods found in the study. Oithona spp and pteropods were numerically important components of the zooplankton community. The copepod and juvenile krill community consumed 1–7% of the daily chlorophyll standing stock, equivalent to 3–21% of the daily phytoplankton production. There was an increased grazing pressure at night due to both increased gut pigment concentrations as well as increases in zooplankton numbers. Phytoplankton carbon contributed a significant fraction (>50%) of the dietary carbon for the copepods during spring and summer. The relative importance of phytoplankton carbon to the diet increased south of the polar front, suggested that grazing by copepods could be important to organic carbon and biogenic silica flux south of the polar front.  相似文献   
255.
The paradox of upwelling is the relationship between strong wind forcing, nutrient enrichment, and shelf productivity. Here we investigate how across-shelf structure in velocity and hydrography plays a role in the retention (inshore) and export (offshore) of particles such as nutrients, plankton and larvae. We examine the spatial structure of the coastal currents during wind-driven upwelling and relaxation on the northern Californian Shelf. The field work was conducted as part of the Wind Events and Shelf Transport (WEST) project, a 5-year NSF/CoOP-funded study of the role of wind-driven transport in shelf productivity off Bodega Bay (northern California) from 2000 to 2003. We combine shipboard velocity profiles (ADCP) and water properties from hydrographic surveys during the upwelling season to examine the mean across-shelf structure of the hydrography and velocity fields during three contrasting upwelling seasons, and throughout the upwelling-relaxation cycle. We also present results from two winter seasons that serve as contrast to the upwelling seasons.During all three upwelling seasons clear spatial structure is evident in velocity and hydrography across the shelf, exemplified by current reversals inshore and the presence of a persistent upwelling jet at the shelf break. This jet feature changes in structure and distance from the coast under different wind forcing regimes. The jet also changes from the north of our region, where it is a single narrow jet, adjacent to the coast, and to the south of our region, where it broadens and at times two jets become evident. We present observations of the California Under Current, which was observed at the outer edge of our domain during all three upwelling seasons. The observed across-shelf structure could aid both in the retention of plankton inshore during periods of upwelling followed by relaxation and in the export of plankton offshore in the upwelling jet.  相似文献   
256.
257.
Naturally occurring isotopes of radon (222Rn) and radium isotopes (223,224,226,228Ra) were used as tracers to assess submarine groundwater discharge (SGD) into Little Lagoon, AL (USA), a site of recurring harmful algal blooms (HABs). The radium isotopic data suggests that there are two groundwater sources of these tracers to the lagoon, a shallow (A1) and deeper (A2) aquifer. We estimated the fraction of each source via a three-end-member mixing model consisting of Gulf of Mexico seawater, shallow and deep groundwater. The estimated lagoonwide SGD rates based on a radium mass balance and the mixing model were 1.22?±?0.53 and 1.59?±?0.20 m3 s-1 for the shallow and deep groundwater discharges, respectively. To investigate temporal variations in SGD, we performed several radon surveys from 2010 through 2012, a period of generally declining groundwater levels due to a drought in the southeastern USA. The total SGD rates based on a radon mass balance approach were found to vary from 0.60 to 2.87 m3 s-1. We observed well-defined relationships between nutrients and chlorophyll-a in lagoon waters during a period when there was an intense diatom bloom in April 2010 and when no bloom existed in March 2011. A good correlation was also found between radium (groundwater-derived) and nutrients during the April 2010 period, while there was no clear relationship between the same parameters in March 2011. Based on multivariate analysis of chemical and environmental factors, we suggest that nutrient-rich inputs during high SGD may be a significant driver of algal blooms, but during low SGD periods, multiple drivers are responsible for the occurrence of algal blooms.  相似文献   
258.
Effective sampling of marsh nekton is difficult due to the organisms’ use of the marsh-edge and/or marsh surface during high tide. Quantitative sampling approaches currently used are expensive, require permanent structures, and can require a considerable number of personnel for implementation. Our purpose was to assess the use of Breder traps (T) as a sampling method capable of documenting relative abundance of nekton. We sampled marsh habitats (within 1 m of marsh grass) in five bayous using seines at high (HS) and low (LS) tide and compared them with rank abundance and similarity data. Seining (n=3/tidal stage) was conducted adjacent to each set of traps (n=4) which were retrieved at low tide. Four transient (Engraulidae, 34.7%; Penaeidae, 12.4%; Portunidae, 6.8%; and Sciaenidae, 1.2%) and four resident families (Palaemonidae, 28.1% Fundulidae, 9.2%; Atherinidae, 3.2%; and Gobiidae, 1.1%) met our requirements (≥1% of all nekton captured) for analysis and accounted for 96.6% of the total nekton captured. High seine and LS collections were most similar (Jaccard's index, 0.58), followed by T and LS (0.46) and HS and T (0.37). Transient families were captured in greatest numbers and higher rank with seines (LS>HS>T) while two resident families (Palaemonidae and Fundulidae) dominated T collections (T>LS>HS). Our data suggests that Breder traps adequately sample resident nekton which use the marsh surface and should be considered in future studies which require only CPUE estimates of abundance.  相似文献   
259.
While many coastal ecosystems previously supported dense meadows of seagrass and dense stocks of bivalves, the impacts of overfishing, eutrophication, harmful algal blooms, and habitat loss have contributed to the decline of these important resources. Anthropogenic nutrient loading and subsequent eutrophication has been identified by some researchers as a primary driver of these losses, but others have described potential positive effects of eutrophication on some estuarine resources. The Peconic Estuary, Long Island, NY, USA, offers a naturally occurring nutrient-loading gradient from eutrophic tidal creeks in its western reaches to mesotrophic bays in the eastern region. Over 2 years, we conducted an experiment across this gradient to examine the effects of eutrophication on the growth of estuarine species, including juvenile bivalves (northern quahogs (Mercenaria mercenaria), eastern oysters, (Crassostrea virginica), and bay scallops (Argopecten irradians)) and slipper limpet (Crepidula fornicata). Water quality and phytoplankton community biomass and composition were concurrently monitored at each site, and the effects of these variables on the growth of estuarine species were analyzed with multiple regression model. Eutrophication seemed to impact shellfish through changes in the quality of food and not the quantity since the growth rates of shellfish were more often correlated with densities of specific cell types or quality of seston rather than bulk measures of phytoplankton and organic seston. Northern quahogs and eastern oysters grew maximally within eutrophic locales, and their growth was positively correlated with high densities of autotrophic nanoflagellates and centric diatoms in these regions (p?<?0.001). The growth rates of northern quahogs were also positively correlated with relative water motion, suggesting an important role for tidal currents in delivering seston to suspension feeders. Bay scallops and slipper limpets were negatively impacted by eutrophication, growing at the slowest rate at the most eutrophic sites. Furthermore, bay scallop growth was negatively correlated with densities of dinoflagellates, which were more abundant at the most eutrophic site (p?<?0.001). These results suggest that nutrient loading can have significant but complex effects on suspension-feeding molluscs with select species (e.g., oysters and clams) benefiting from eutrophication and other species performing poorly (e.g., scallops and slipper limpets). Future management approaches that seek to restore bivalve populations will need to account for the differential effects of nutrient loading as managers target species and regions to be restored.  相似文献   
260.
We review geologic records of both historic and prehistoric tsunami inundations at three widely separated localities that experienced significant damage from the 1964 Alaskan tsunami along the Cascadia margin. The three localities are Port Alberni, Cannon Beach, and Crescent City, representing, respectively, the north, central, and south portions of the study area (1,000 km in length). The geologic records include anomalous sand sheets from marine surges that are hosted in supratidal peaty mud deposits. Paleotsunami sand sheets that exceed the thickness, continuity and/or extent of the 1964 historic tsunami are counted as major paleotsunami inundations. Major paleotsunamis (6–7 in number) at each locality during the last 3,000 years demonstrate mean recurrence intervals of 450–540 years, and within-cluster intervals (three events each) of 270–460 years. It has been 313 years since the last major paleotsunami from a great Cascadia earthquake in AD 1700. We compare the dated sequences of major paleotsunami inundations to the nearest regional records of coastal coseismic subsidence in Willapa Bay in the central margin, Waatch/Neah Bay in the northern margin, and Coquille in the southern margin. Similar numbers of events from both types of records suggest that the major paleotsunamis are locally derived (near-field) from ruptures of the Cascadia margin megathrust fault zone, rather than from transoceanic tsunamis (far-field) originating at other subduction zones around the Pacific Rim. Given the catastrophic hazard of the near-field Cascadia margin tsunamis, we propose a basic rule for reminding the general public of the need for self-initiated evacuation following a great earthquake at the Cascadia margin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号