首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5835篇
  免费   188篇
  国内免费   89篇
测绘学   169篇
大气科学   547篇
地球物理   1454篇
地质学   2014篇
海洋学   551篇
天文学   755篇
综合类   22篇
自然地理   600篇
  2021年   62篇
  2020年   65篇
  2019年   88篇
  2018年   124篇
  2017年   117篇
  2016年   157篇
  2015年   146篇
  2014年   202篇
  2013年   326篇
  2012年   244篇
  2011年   263篇
  2010年   193篇
  2009年   304篇
  2008年   287篇
  2007年   263篇
  2006年   220篇
  2005年   189篇
  2004年   196篇
  2003年   189篇
  2002年   181篇
  2001年   133篇
  2000年   137篇
  1999年   113篇
  1998年   109篇
  1997年   92篇
  1996年   87篇
  1995年   85篇
  1994年   75篇
  1993年   64篇
  1992年   66篇
  1991年   69篇
  1990年   66篇
  1989年   59篇
  1988年   58篇
  1987年   65篇
  1986年   44篇
  1985年   76篇
  1984年   80篇
  1983年   73篇
  1982年   65篇
  1981年   77篇
  1980年   65篇
  1979年   57篇
  1978年   39篇
  1977年   54篇
  1976年   63篇
  1975年   46篇
  1974年   56篇
  1973年   47篇
  1972年   25篇
排序方式: 共有6112条查询结果,搜索用时 15 毫秒
991.
The records of two large stock and station agents, Loan & Mercantile Agency in Dunedin and Wright Stephenson in Invercargill, allowed us to track the timing, nature, magnitude and rate of landscape change in southern New Zealand between 1896 and 1920. This period extends from the final years of subdivision of large estates, and includes closer settlement, the shift from pastoral farming to intensive agriculture, growth of dairying, and increasing mechanisation of agriculture. These changes are reflected in clients’ annual expenditures on capital items such as fencing and building materials, tools and implements, materials for drains.  相似文献   
992.
Earth’s fastest present seafloor spreading occurs along the East Pacific Rise near 31°–32° S. Two of the major hydrothermal plume areas discovered during a 1998 multidisciplinary geophysical/hydrothermal investigation of these mid-ocean ridge axes were explored during a 1999 Alvin expedition. Both occur in recently eruptive areas where shallow collapse structures mark the neovolcanic axis. The 31° S vent area occurs in a broad linear zone of collapses and fractures coalescing into an axial summit trough. The 32° S vent area has been volcanically repaved by a more recent eruption, with non-linear collapses that have not yet coalesced. Both sites occur in highly inflated areas, near local inflation peaks, which is the best segment-scale predictor of hydrothermal activity at these superfast spreading rates (150 mm/yr).  相似文献   
993.
The North Sakhalin Basin in the western Sea of Okhotsk has been the main site of sedimentation from the Amur River since the Early Miocene. In this article, we present regional seismic reflection data and a Neogene–Recent sediment budget to constrain the evolution of the basin and its sedimentary fill, and consider the implications for sediment flux from the Amur River, in particular testing models of continental‐scale Neogene drainage capture. The Amur‐derived basin‐fill history can be divided into five distinct stages: the first Amur‐derived sediments (>21–16.5 Ma) were deposited during a period of transtension along the Sakhalin‐Hokkaido Shear Zone, with moderately high sediment flux to the basin (71 Mt year?1). The second stage sequence (16.5–10.4 Ma) was deposited following the cessation of transtension, and was characterised by a significant reduction in sediment flux (24 Mt year?1) and widespread retrogradation of deltaic sediments. The third (10.4–5.3 Ma) and fourth (5.3–2.5 Ma) stages were characterised by progradation of deltaic sediments and an associated increase in sediment flux (48–60 Mt year?1) to the basin. Significant uplift associated with regional transpression started during this time in southeastern Sakhalin, but the north‐eastward propagating strain did not reach the NE shelf of Sakhalin until the Pleistocene (<2.5 Ma). This uplift event, still ongoing today, resulted in recycling of older deltaic sediments from the island of Sakhalin, and contributed to a substantially increased total sediment flux to the adjacent basinal areas (165 Mt year?1). Adjusted rates to discount these local erosional products (117 Mt year?1) imply an Amur catchment‐wide increase in denudation rates during the Late Pliocene–Pleistocene; however, this was likely a result of global climatic and eustatic effects, combined with tectonic processes within the Amur catchment and possibly a smaller drainage capture event by the Sungari tributary, rather than continental‐scale drainage capture involving the entire upper Amur catchment.  相似文献   
994.
Sixty-five million year old continental flood basalts crop out on Qeqertarssuaq Island and the Nuussuaq Peninsula in West Greenland, and they include ~1,000 m of picritic lavas and discrete 10- to 50-m-thick members of highly contaminated basalts. On Qeqertarssuaq, the lavas are allocated to the Vaîgat and Maligât Formations of which the former includes the Naujánguit member, which consists of picrites with 7–29 wt% MgO, 80–1,400 ppm Ni, 5.7–9.4 ppb Pt and 4.2–12.9 ppb Pd. The Naujánguit member contains two horizons of contaminated basalts, the Asûk and Kûgánguaq, which have elevated SiO2 (52–58 wt%) and low to moderate MgO (7.5–12.8 wt%). These lavas are broadly characterized by low Cu and Ni abundances (average, 40 ppm Ni and 45 ppm Cu) and very low Pt (0.16–0.63 ppb) and Pd (0.13–0.68 ppb) abundances, and in the case of the Asûk, they contain shale xenoliths and droplets of native iron and troilite. The contaminated basalts from Nuussuaq, the B0 to B4 members, are also usually Ni-, Cu-, and platinum-group elements (PGE)-depleted. The geochemical signatures (especially the ratios of incompatible trace elements such as Th/Nb) of all of the contaminated basalts from Qeqertarssuaq and some of those from Nuussuaq record what appears to be a chemical contribution from deltaic shales that lie immediately below the lavas. This suggests that the contamination of the magmas occurred during the migration of the magmas through plumbing systems developed in sedimentary rocks, and hence, at a high crustal level. Nickel, Cu, and PGE depletion together with geochemical signatures produced by crustal contamination are also a feature of Siberian Trap basalts from the Noril’sk region. These basalts belong to the 0- to 500-m thick, ~5,000- to 10,000-km3 Nadezhdinsky Formation, which is centered in the Noril’sk Region. A major difference between Siberia and West Greenland is that PGE depletion in the Nadezhdinsky Formation samples with the lowest Cu and Ni contents is much more severe than that of the West Greenland contaminated basalts. Moreover, the volumes of the contaminated and metal-depleted volcanic rocks in West Greenland pale is significant when compared to the Nadezhdinsky Formation; local centers rarely contain more than 15 thin flows with a combined thickness of <50 m and more typically 10–20 m, so the volume of the eruptive portions of each system is probably two orders of magnitude smaller than the Nadezhdinsky edifice. The West Greenland centres are juxtaposed along fault zones that appear to be linked to the subsidence of the Tertiary delta, and so emplacement along N–S structures appears to be a principal control on the distribution of lavas and feeder intrusions. This leads us to suggest that the Greenland system is small and segregation of sulphide took place at high levels in the crust, whereas at Noril’sk, the saturation event took place at depth with subsequent emplacement of sulphide-bearing magmas into high levels of the crust. As a consequence, it may be unreasonable to expect that the West Greenland flood basalts experienced mineralizing processes on the scale of the Noril’sk system.  相似文献   
995.
Concentrations of dissolved oxygen (DO) plotted vs. dissolved organic carbon (DOC) in groundwater samples taken from a coastal plain aquifer of South Carolina (SC) showed a statistically significant hyperbolic relationship. In contrast, DO-DOC plots of groundwater samples taken from the eastern San Joaquin Valley of California (CA) showed a random scatter. It was hypothesized that differences in the bioavailability of naturally occurring DOC might contribute to these observations. This hypothesis was examined by comparing nine different biochemical indicators of DOC bioavailability in groundwater sampled from these two systems. Concentrations of DOC, total hydrolysable neutral sugars (THNS), total hydrolysable amino acids (THAA), mole% glycine of THAA, initial bacterial cell counts, bacterial growth rates, and carbon dioxide production/consumption were greater in SC samples relative to CA samples. In contrast, the mole% glucose of THNS and the aromaticity (SUVA(254)) of DOC was greater in CA samples. Each of these indicator parameters were observed to change with depth in the SC system in a manner consistent with active biodegradation. These results are uniformly consistent with the hypothesis that the bioavailability of DOC is greater in SC relative to CA groundwater samples. This, in turn, suggests that the presence/absence of a hyperbolic DO-DOC relationship may be a qualitative indicator of relative DOC bioavailability in groundwater systems.  相似文献   
996.
The microprobe EDXRF equipment was used for analysis of the major and trace elements in glaze layer-transitive layer-body layer of the celadon from the Altar Yao (Kiln) and Laohudong Yao in the Southern Song Dynasty (1127-1279 A.D.), Zhejiang, China. The K values of the discriminant factor for the celadon wares are larger than 8, which means the celadon of the Altar Yao and Laohudong Yao are different from that of the Longquan Yao. The former two belong to the Guan Yao system (the Chinese imperial kilns), but the latter to the Min Yao system (the Chinese popular kilns). The principle component analysis shows their relationship between the Altar and Laohudong wares with provenance postulation. The thickness of the transitive layer in the Altar and Laohudong wares is obviously different, which reveals the microstructure characteristics of the celadon even though both kinds of wares belong to the imperial kiln system.  相似文献   
997.
A combined mineral magnetic and scaled chrysophyte study of lake sediments from Lake Lacawac and Lake Giles in northeastern Pennsylvania was conducted to determine the effects of land-use and sediment source changes on the variation of pH, conductivity, and alkalinity inferred from biotic changes. Ten 30–40 cm long gravity cores were collected from Lake Lacawac and three from Lake Giles. Isothermal remanent magnetizations (IRMs) were given to the lake sediments in a 1.3 T magnetic field to measure magnetic mineral concentration variations. IRM acquisition experiments were conducted to identify magnetic mineralogy. The bedrock, soils and a peat bog on the shores of Lake Lacawac were also sampled for magnetic analysis to determine possible lake sediment sources. The top 10 cm of sediment collected from Lakes Lacawac and Giles was two to four times more magnetic than deeper sediment. 210Pb dating suggests that this intensity increase commenced circa 1900. SEM images of magnetic extracts from the highly magnetic sediments indicates the presence of magnetic fly ash microspheres from fossil fuel burning electric power generation plants. The similarity in magnetic coercivity in the top 8 cm lake sediments and in the peat bog supports an atmospheric source for some of the magnetic minerals in the youngest lake sediments. The highly magnetic sediments also contain an antiferromagnetic mineral in two cores closest to Lake Lacawacs southeastern shore. This magnetic mineral is only present deep in the soil profile and would suggest erosion and significant land-use changes in the Lacawac watershed as another cause for the high magnetic intensities (concentrations) in the top 10 cm of the lake sediments. The most significant changes in the scaled chrysophyte flora occurred immediately above the 10 cm level and were used to infer a doubling of the specific conductivity between circa 1910 and 1929. These variations also support land-use changes in the Lacawac catchment at this time. A similar shift in the scaled chrysophte flora was not observed in the top of Lake Giles, however, distinct changes were found in the deeper sections of the core coupled with a smaller peak in magnetic concentration. Fourier analysis of the 210Pb-dated lake sediment magnetics indicates the presence of a 50 year period, low amplitude variation in the Lake Lacawac, Lake Giles, and Lake Waynewood (Lott et al., 1994) magnetic concentration records. After removal of the land-use/fly ash magnetic concentration peak by Gaussian filtering, the 50 year variation correlates strongly from lake to lake even though the lakes are in different watersheds separated by up to 30 km. When this magnetic variation is compared with Gaussian-filtered rainfall variations observed in New York City and Philadelphia over the past 120–250 years there is a strong correlation suggesting that magnetic concentration variations can record regional rainfall variations with an approximately 50 year period. This result indicates that magnetics could be used to document regional variations in climatic change.  相似文献   
998.
Understanding flow pathways and mechanisms that generate streamflow is important to understanding agrochemical contamination in surface waters in agricultural watersheds. Two environmental tracers, δ18O and electrical conductivity (EC), were monitored in tile drainage (draining 12 ha) and stream water (draining nested catchments of 6‐5700 ha) from 2000 to 2008 in the semi‐arid agricultural Missouri Flat Creek (MFC) watershed, near Pullman Washington, USA. Tile drainage and streamflow generated in the watershed were found to have baseline δ18O value of ?14·7‰ (VSMOW) year round. Winter precipitation accounted for 67% of total annual precipitation and was found to dominate streamflow, tile drainage, and groundwater recharge. ‘Old’ and ‘new’ water partitioning in streamflow were not identifiable using δ18O, but seasonal shifts of nitrate‐corrected EC suggest that deep soil pathways primarily generated summer streamflow (mean EC 250 µS/cm) while shallow soil pathways dominated streamflow generation during winter (EC declining as low as 100 µS/cm). Using summer isotopic and EC excursions from tile drainage in larger catchment (4700‐5700 ha) stream waters, summer in‐stream evaporation fractions were estimated to be from 20% to 40%, with the greatest evaporation occurring from August to October. Seasonal watershed and environmental tracer dynamics in the MFC watershed appeared to be similar to those at larger watershed scales in the Palouse River basin. A 0·9‰ enrichment, in shallow groundwater drained to streams (tile drainage and soil seepage), of δ18O values from 2000 to 2008 may be evidence of altered precipitation conditions due to the Pacific Decadal Oscillation (PDO) in the Inland Northwest. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
999.
Introduction Earthquake magnitude is the most common measure of an earthquake′s size,and is one of the basic parameters of an earthquake.There are three most familiar scales of earthquake magnitude:ML(local earthquake magnitude),MS(surface wave magnitude)and mB/mb(body wave magni-tude).Richter(1935)introduced ML when studying earthquakes in Southern California.In1945,Gutenberg(1945a)put forward surface wave magnitude scale to determine earthquake magnitude(MS)using surface waves(20s)of s…  相似文献   
1000.
Many fabrics in Corallian (Upper Jurassic) carbonates in England, France and Switzerland are bigenetic, forming by solution/precipitation and recrystallization processes. Early precipitated cements are non‐ferroan, whereas those formed later are decidedly ferroan. Mossbauer spectroscopy has shown that the iron in the carbonates is largely divalent, substituting for calcium in the calcite lattice. The cements may be subdivided into those forming in an oxidizing environment, and those forming in a reducing environment. Fabric evidence indicates that a solution period separates the two cement phases. The diagenetic history is linked with the sedimentation pattern. Thus, under progressive build up of sediments into shallow‐water or supratidal conditions, the first‐phase cement probably precipitated from non‐marine, partially oxygenated vadose water. Subsequent subsidence and sedimentation resulted in the depression of partially cemented sediments into zones within the sedimentary pile conducive first to pyrite precipitation, and then to ferroan calcite precipitation. Fabrics can therefore be used to interpret the diagenetic environment of regressive sedimentary associations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号