首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34969篇
  免费   697篇
  国内免费   313篇
测绘学   893篇
大气科学   2770篇
地球物理   7085篇
地质学   12733篇
海洋学   3072篇
天文学   7013篇
综合类   86篇
自然地理   2327篇
  2021年   325篇
  2020年   357篇
  2019年   385篇
  2018年   841篇
  2017年   835篇
  2016年   980篇
  2015年   603篇
  2014年   997篇
  2013年   1867篇
  2012年   1156篇
  2011年   1464篇
  2010年   1228篇
  2009年   1639篇
  2008年   1444篇
  2007年   1426篇
  2006年   1369篇
  2005年   1018篇
  2004年   1024篇
  2003年   945篇
  2002年   940篇
  2001年   833篇
  2000年   832篇
  1999年   657篇
  1998年   621篇
  1997年   683篇
  1996年   548篇
  1995年   552篇
  1994年   542篇
  1993年   437篇
  1992年   450篇
  1991年   423篇
  1990年   437篇
  1989年   398篇
  1988年   400篇
  1987年   429篇
  1986年   362篇
  1985年   495篇
  1984年   489篇
  1983年   513篇
  1982年   478篇
  1981年   440篇
  1980年   461篇
  1979年   375篇
  1978年   339篇
  1977年   345篇
  1976年   326篇
  1975年   309篇
  1974年   320篇
  1973年   298篇
  1971年   190篇
排序方式: 共有10000条查询结果,搜索用时 484 毫秒
941.
Lake Teletskoye occupies a narrow graben located in the northwestern sector of the Altai fold belt in South Siberia. The lake basin is thought to have formed during the Pleistocene as a distant result of the Cenozoic collision of India and Eurasia that caused a tectonic reactivation of the Palaeozoic Gorny–Altai (GA) and West Sayan (WS) blocks.The present work reports of a pilot fission-track study performed on 13 apatite separates collected from rocks that were sampled along two profiles in close proximity of the lake. The age–length data and AFT thermochronological modelling reveal two important phases of cooling in the Altai Mountains, a first one during the Late Jurassic–Early Cretaceous and a second one that started in the Miocene–Pliocene and that persists until today. The first event is interpreted to result from uplift-induced denudation probably related to the closure of the Mongol–Okhotsk Ocean; the second event can be linked to the young Cenozoic movements that lie at the origin of the formation of the Lake Teletskoye basin.  相似文献   
942.
A combined volcanological, geochemical, paleo-oceanological, geochronological and geophysical study was undertaken on the Kurile Basin, in order to constrain the origin and evolution of this basin. Very high rates of subsidence were determined for the northeastern floor and margin of the Kurile Basin. Dredged volcanic samples from the Geophysicist Seamount, which were formed under subaerial or shallow water conditions but are presently located at depths in excess of 2300 m, were dated at 0.84±0.06 and 1.07±0.04 Ma with the laser 40Ar/39Ar single crystal method, yielding a minimum average subsidence rate of 1.6 mm/year for the northeast basin floor in the Quaternary. Trace element and Sr–Nd–Pb isotope data from the volcanic rocks show evidence for contamination within lower continental crust and/or the subcontinental lithospheric mantle, indicating that the basement presently at 6-km depth is likely to represent thinned continental crust. Average subsidence rates of 0.5–2.0 mm/year were estimated for the northeastern slope of the Kurile Basin during the Pliocene and Quaternary through the determination of the age and paleo-environment (depth) of formation of sediments from a canyon wall. Taken together, the data from the northeastern part of the Kurile Basin indicate that subsidence began in or prior to the Early Pliocene and that subsidence rates have increased in the Quaternary. Similar rates of subsidence have been obtained from published studies on the Sakhalin Shelf and Slope and from volcanoes in the rear of the Kurile Arc. The recent stress field of the Kurile Basin is inferred from the analysis of seismic activity, focal mechanism solutions and from the structure of the sedimentary cover and of the Alaid back-arc volcano. Integration of these results suggests that compression is responsible for the rapid subsidence of the Kurile Basin and that subsidence may be an important step in the transition from basin formation to its destruction. The compression of the Kurile Basin results from squeezing of the Okhotsk Plate between four major plates: the Pacific, North American, Eurasian and Amur. We predict that continued compression could lead to subduction of the Kurile Basin floor beneath Hokkaido and the Kurile Arc in the future and thus to basin closure.  相似文献   
943.
The nature and origin of the sediments and crust of the Murray Ridge System and northern Indus Fan are discussed. The uppermost unit consists of Middle Miocene to recent channel–levee complexes typical of submarine fans. This unit is underlain by a second unit composed of hemipelagic to pelagic sediments deposited during the drift phase after the break-up of India–Seychelles–Africa. A predrift sequence of assumed Mesozoic age occurring only as observed above basement ridges is composed of highly consolidated rocks. Different types of the acoustic basement were detected, which reflection seismic pattern, magnetic anomalies and gravity field modeling indicate to be of continental character. The continental crust is extremely thinned in the northern Indus Fan, lacking a typical block-faulted structure. The Indian continent–ocean transition is marked on single MCS profiles by sequences of seaward-dipping reflectors (SDR). In the northwestern Arabian Sea, the Indian plate margin is characterized by several phases of volcanism and deformation revealed from interpretation of multichannel seismic profiles and magnetic anomalies. From this study, thinned continental crust spreads between the northern Murray Ridge System and India underneath the northern Indus Fan.  相似文献   
944.
Hydrocarbons occur in two regional, Upper Cretaceous limestone units—the Turonian-Coniacian Petrel Member, and the Santonian-Maastrichtian Wyandot Formation. The units form important seismic markers beneath the Scotian Shelf and the Grand Banks of Eastern Canada. They mainly consist of bioturbated chalk and minor amounts of calcareous mudstone. A search for source rock using the Δ log R technique showed intervals with source potential, but testing of core and cuttings by Rock-Eval analysis showed no source potential. Three issues are the main cause for the inconsistency: (1) unconsolidated shales that likely included organic material were lost during sample washing; (2) severe contamination by mud additives; and (3) presence of gas. The organic matter found on the shelf has been strongly oxidised, but the distal facies of these limestone units and condensed shale units above and below may yet have potential to form source rock, beyond the studied areas.  相似文献   
945.
Archaeological investigations in Camels Back Cave, western Utah, recovered a series of small-mammal bone assemblages from stratified deposits dating between ca. 12,000 and 500 14C yr B.P. The cave's early Holocene fauna includes a number of species adapted to montane or mesic habitats containing grasses and/or sagebrush (e.g., Lepus townsendii, Marmota flaviventris, Reithrodontomys megalotis, and Brachylagus idahoensis) which suggest that the region was relatively cool and moist until after 8800 14C yr B.P. Between ca. 8600 and 8100 14C yr B.P. these mammals became locally extinct, taxonomic diversity declined, and there was an increase in species well-adapted to xeric, low-elevation habitats, including ground squirrels, Lepus californicus and Neotoma lepida. The early small-mammal record from Camels Back Cave is similar to the 11,300–6000 14C yr B.P. mammalian sequence from Homestead Cave, northwestern Utah, and provides corroborative data on Bonneville Basin paleoenvironments and mammalian responses to middle Holocene desertification.  相似文献   
946.
 Most natural feldspars contain many charged impurities, and display a range of bond angles, distributed about the ideal. These effects can lead to complications in the structure of the conduction band, giving rise to a tail of energy states (below the high-mobility conduction band) through which electrons can travel, but with reduced mobility: transport through these states is expected to be thermally activated. The purpose of this article is twofold. Firstly, we consider what kind of lattice perturbations could give rise to both localized and extended conduction band-tail states. Secondly, we consider what influence the band tails have on the luminescence properties of feldspar, where electrons travel through the sample prior to recombination. The work highlights the dominant role that 0.04–0.05-eV phonons play in both the luminescence excitation and emission processes of these materials. It also has relevance in the dating of feldspar sediments at elevated temperatures. Received: 11 May 2001 / Accepted: 6 September 2001  相似文献   
947.
 Premelting effects in gehlenite (Ca2Al2SiO7) have been studied by Raman spectroscopy and calorimetry, and in gehlenite and pseudowollastonite (CaSiO3) by electrical conductivity. The enthalpy of premelting of gehlenite is 17.3 kJ mol−1 and represents 9% of the reported enthalpy of fusion, which is in the range of the reported fraction of other minerals. The Raman and electrical conductivity experiments at high temperatures, for gehlenite and pseudowollastonite, show that the premelting effects of both compositions are associated with enhanced dynamics of calcium atoms near the melting point. This conclusion agrees with the results obtained for other minerals like diopside, but contrasts with those found for sodium metasilicate in which the weaker bonding of sodium allows the silicate framework to distort near the melting temperature and deform in such a way to prefigure the silicate entities present in the melt. Received: 30 April 2002 / Accepted: 7 August 2002 Acknowledgements We thank Y. Linard for help with DSC measurements and two anonymous reviewers for their constructive comments. This work has been partly supported by the EU Marie-Curie fellowship contract no. HPMF-CT-1999-00329, the CNRS-Carnegie Institution of Washington program PICS no.192, and the NSF grants EAR-9614432 and EAR-9901886 to B.O.M.  相似文献   
948.
 This paper presents an improved generalisation of cation distribution determination based on an accurate fit of all crystal-chemical parameters. Cations are assigned to the tetrahedral and octahedral sites of the structure according to their scattering power and a set of bond distances optimised for spinel structure. A database of 295 spinels was prepared from the literature and unpublished data. Selected compositions include the following cations: Mg2+, Al3+, Si4+, Ti4+, V3+, Cr3+, Mn2+, Mn3+, Fe2+, Fe3+, Co2+, Ni2+, Zn2+ and vacancies. Bond distance optimisation reveals a definite lengthening in tetrahedral distance when large amounts of Fe3+ or Ni2+ are present in the octahedral site. This means that these cations modify the octahedral angle and hence the shared octahedral edge, causing an increase in the tetrahedral distance with respect to the size of the cations entering it. Some applications to published data are discussed, showing the capacity and limitations of the method for calculating cation distribution, and for identifying inconsistencies and inaccuracies in experimental data. Received: 19 February 2001 / Accepted: 1 June 2001  相似文献   
949.
950.
The Gustav Group of the James Ross Basin, Antarctic Peninsula, forms part of a major Southern Hemisphere Cretaceous reference section. Palynological data, chiefly from dinoflagellate cysts, integrated with macrofaunal evidence and strontium isotope stratigraphy, indicate that the Gustav Group, which is approximately 2.6 km thick, is Aptian–Coniacian in age. Aptian–Coniacian palynofloras in the James Ross Basin closely resemble coeval associations from Australia and New Zealand, and Australian palynological zonation schemes are applicable to the Gustav Group. The lowermost units, the coeval Pedersen and Lagrelius Point formations, have both yielded early Aptian dinoflagellate cysts. Because the overlying Kotick Point Formation is of early to mid Albian age, the Aptian/Albian boundary is placed, questionably, at the Lagrelius Point Formation–Kotick Point Formation boundary on James Ross Island, and this transition may be unconformable. Although the Kotick Point Formation is largely early Albian on dinoflagellate cyst evidence, the uppermost part of the formation appears to be of mid Albian age. This differentiation of the early and mid Albian has refined the age of the formation, previously considered to be Aptian–Albian, based on macrofaunal evidence. The Whisky Bay Formation is of late Albian to latest Turonian age on dinoflagellate cyst evidence and this supports the macrofaunal ages. Late Albian palynofloras have been recorded from the Gin Cove, lower Tumbledown Cliffs, Bibby Point and the lower–middle Lewis Hill members. However, the Cenomanian age of the upper Tumbledown Cliffs and Rum Cove members, based on molluscan evidence, is not supported by the dinoflagellate cyst floras and further work is required on this succession. The uppermost part of the Whisky Bay Formation in north-west James Ross Island is of mid to late Turonian age and this is confirmed by strontium isotope stratigraphy. The uppermost unit, the Hidden Lake Formation, is Coniacian in age on both palaeontological and strontium isotope evidence. The uppermost part of the formation appears to be early Santonian based on dinoflagellate cysts, but strontium isotope stratigraphy constrains this as being no younger than late Coniacian. This refined palynostratigraphy greatly improves the potential of the James Ross Basin as a major Cretaceous Southern Hemisphere reference section.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号