排序方式: 共有21条查询结果,搜索用时 13 毫秒
1.
2.
3.
4.
L. P. Pellinen 《Journal of Geodesy》1962,36(1):57-65
A calculation of quasigeoidal heights and plumb-line deflections according to Molodensky formulae was carried out under elimination
of the effect of topography from gravity anomalies. After the masses of topography had been removed a smoothed-out surface
passing through astronomical and gravity stations was considered as representing the physical surface of the Earth. Thus it
has been practically rendered possible to use the first-approximation formulae of Molodensky, and, in many cases, also the
“zero-approximation” formulae analogous to the formulae of Stokes and Vening-Meinesz. The effect of the restored masses of
topography was then added to the quantities found; the said effect was expressed as the effect of topography condensed on
the normal equipotential surface passing through the point under investigation, plus a correction for condensation. Following
some transformations, the resulting formulae (13) and (18) were obtained which formulae differ in their “zero-approximation”
(15) and (20) from traditional formulas in that they contain terrait reductions added to free-air anomalies. Moreover, in
the calculation of plumb-line deflections directly in mountain regions a correction for differing effects of topography before
and after its condensation is to be introduced.
A tentative expansion of terrain reduction in terms of spherical harmonics up to the third order is given; it can be seen
therefrom that the Stokes series in its usual form is subject to a mean arror about 15–20%. It is also shown that the expansion
of free-air anomalies in terms of spherical functions contains a first-order harmonic with a mean values about ±0.3 mgl. The
said harmonic practically disappears in the expansion of the sum of free-air anomalies and terrain reductions. 相似文献
5.
6.
K. Kauristie T. I. Pulkkinen R. J. Pellinen H. J. Opgenoorth 《Annales Geophysicae》1997,14(11):1177-1185
The AE indices are generally used for monitoring the level of magnetic activity in the auroral oval region. In some cases, however, the oval is either so expanded or contracted that the latitudinal coverage of the AE magnetometer chain is not adequate. Then, a longitudinal chain in the key region would give more information of the real situation, but, of course, only during some limited UT-period. In order to find out the UT coverage of a single meridional chain, we have compared the global AL and AU indices with corresponding local indices determined using data from the meridional part of the EISCAT Magnetometer Cross during the years 1985–1987. A statistical study shows that the local indices are close (within relative error of 0.2) to the global AU and AL during periods 1500–2000 UT ( 1730–2230 MLT) and 2130–0130 UT (000–0400 MLT), respectively. In the middle of these optimal MLT-sectors the EISCAT Cross sees more than 70% of the cases when the global AE chain records activity. Then, also the correlation between the local and global indices is generally good (>0.7). Thus we conclude that five to six evenly located meridional chains are needed for covering all the UT-periods. On the other hand, already the combination of IMAGE, CANOPUS, and the Greenland chains catches 50% of the substorms. Case-studies show that usually during 2130 – 1100 UT the AL achieved from these chains reproduces the real AL with good timing, although it does not follow all transient variations. 相似文献
7.
R.J. Pellinen 《Planetary and Space Science》1979,27(1):19-30
In view of observations which show that a substorm often begins in a small local time sector, a model is assumed in which the neutral sheet current is diverted around a small region we call a bubble. The simplest assumption is that of a linear variation of current with distance from the centre of the bubble in the x-direction in a SM coordinate system, with the diverted current being channelled within narrow paths of width δy on the dawn and dusk sides of the bubble. This assumption leads to vector potential integrals that can be evaluated analytically. The addition of this current loop into the magnetotail results in a magnetic field structure where new neutral lines of X- and 0-type can be observed; these are connected to each other as a continuous neutral ring in the xy equatorial plane. The magnetic and electric field components around the neutral regions are calculated, and the time dependent evolution of the neutral ring is studied. Comparison with some published satellite observations shows good agreement. Taking typical values for the various quantities on the basis of actual observations within the magnetotail, we show that the induced electric field is at least comparable to the average cross-tail electrostatic field, and it may well be one or two orders of magnitude greater. The response of the plasma to the induction field is discussed qualitatively. It is concluded that field aligned currents may be produced due to inertial forces of the expanding disturbance. Interpretation of the ground based precipitation patterns of energized particles during auroral breakup is given. 相似文献
8.
Walter J. Heikkila R.J. Pellinen C.-G. Fälthammar L.P. Block 《Planetary and Space Science》1979,27(11):1383-1389
During quiescent auroras the large-scale electric field is essentially irrotational. The volume formed by the plasma sheet and its extension into the auroral oval is connected to an external source by electric currents, which enter and leave the volume at different electric potentials and which supply sufficient energy to support the auroral activity. The location of the actual acceleration of particles depends on the internal distribution of electric fields and currents. One important feature is the energization of the carriers of the cross-tail current and another is the acceleration of electrons precipitated through relatively low-altitude magnetic-field-aligned potential drops.Substorm auroras depend on rapid and (especially initially) localized release of energy that can only be supplied by tapping stored magnetic energy. The energy is transmitted to the charged particle via electric inductive fields.The primary electric field due to changing electric currents is redistributed in a complicated way—but never extinguished—by polarization of charges. As a consequence, any tendency of the plasma to suppress magnetic-field-aligned components of the electric fields leads to a corresponding enhancement of the transverse component. 相似文献
9.
10.
J. L. Bertaux E. Kyrölä E. Quémerais R. Pellinen R. Lallement W. Schmidt M. Berthé E. Dimarellis J. P. Goutail C. Taulemesse C. Bernard G. Leppelmeier T. Summanen H. Hannula H. Huomo V. Kehlä S. Korpela K. Leppälä E. Strömmer J. Torsti K. Viherkanto J. F. Hochedez G. Chretiennot R. Peyroux T. Holzer 《Solar physics》1995,162(1-2):403-439
On board the SOHO spacecraft poised at L1 Lagrange point, the SWAN instrument is mainly devoted to the measurement of large scale structures of the solar wind, and in particular the distribution with heliographic latitude of the solar wind mass flux. This is obtained from an intensity map of the sky Lyman emission, which reflects the shape of the ionization cavity carved in the flow of interstellar H atoms by the solar wind. The methodology, inversion procedure and related complications are described. The subject of latitude variation of the solar wind is shortly reviewed: earlier Lyman results from Prognoz in 1976 are confirmed by Ulysses. The importance of the actual value of the solar wind mass flux for the equation of dynamics in a polar coronal hole is stressed. The instrument is composed of one electronic unit commanding two identical Sensor Units, each of them allowing to map a full hemisphere with a resolution of 1°, thanks to a two-mirrors periscope system. The design is described in some details, and the rationale for choice between several variants are discussed. A hydrogen absorption cell is used to measure the shape of the interplanetary Lyman line and other Lyman emissions. Other types of observations are also discussed : the geocorona, comets (old and new), the solar corona, and a possible signature of the heliopause. The connexion with some other SOHO instruments, in particular LASCO, UVCS, SUMER, is briefly discussed. 相似文献