首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4752篇
  免费   145篇
  国内免费   55篇
测绘学   152篇
大气科学   411篇
地球物理   1067篇
地质学   1769篇
海洋学   439篇
天文学   828篇
综合类   15篇
自然地理   271篇
  2023年   13篇
  2022年   45篇
  2021年   67篇
  2020年   70篇
  2019年   58篇
  2018年   149篇
  2017年   153篇
  2016年   187篇
  2015年   123篇
  2014年   155篇
  2013年   235篇
  2012年   210篇
  2011年   282篇
  2010年   215篇
  2009年   293篇
  2008年   247篇
  2007年   206篇
  2006年   217篇
  2005年   222篇
  2004年   301篇
  2003年   228篇
  2002年   154篇
  2001年   115篇
  2000年   106篇
  1999年   83篇
  1998年   98篇
  1997年   63篇
  1996年   36篇
  1995年   38篇
  1994年   42篇
  1993年   34篇
  1992年   40篇
  1991年   22篇
  1990年   35篇
  1989年   13篇
  1988年   16篇
  1987年   21篇
  1986年   19篇
  1985年   15篇
  1984年   20篇
  1983年   19篇
  1982年   15篇
  1981年   22篇
  1978年   22篇
  1977年   20篇
  1976年   15篇
  1975年   18篇
  1974年   16篇
  1973年   15篇
  1971年   12篇
排序方式: 共有4952条查询结果,搜索用时 15 毫秒
991.
New swath bathymetric, multichannel seismic and magnetic data reveal the complexity of the intersection between the extinct West Scotia Ridge (WSR) and the Shackleton Fracture Zone (SFZ), a first-order NW-SE trending high-relief ridge cutting across the Drake Passage. The SFZ is composed of shallow, ridge segments and depressions, largely parallel to the fracture zone with an `en echelon' pattern in plan view. These features are bounded by tectonic lineaments, interpreted as faults. The axial valley of the spreading center intersects the fracture zone in a complex area of deformation, where N120° E lineaments and E–W faults anastomose on both sides of the intersection. The fracture zone developed within an extensional regime, which facilitated the formation of oceanic transverse ridges parallel to the fracture zone and depressions attributed to pull-apart basins, bounded by normal and strike-slip faults.On the multichannel seismic (MCS) profiles, the igneous crust is well stratified, with numerous discontinuous high-amplitude reflectors and many irregular diffractions at the top, and a thicker layer below. The latter has sparse and weak reflectors, although it locally contains strong, dipping reflections. A bright, slightly undulating reflector observed below the spreading center axial valley at about 0.75 s (twt) depth in the igneous crust is interpreted as an indication of the relict axial magma chamber. Deep, high-amplitude subhorizontal and slightly dipping reflections are observed between 1.8 and 3.2 s (twt) below sea floor, but are preferentially located at about 2.8–3.0 s (twt) depth. Where these reflections are more continuous they may represent the Mohorovicic seismic discontinuity. More locally, short (2–3 km long), very high-amplitude reflections observed at 3.6 and 4.3 s (twt) depth below sea floor are attributed to an interlayered upper mantle transition zone. The MCS profiles also show a pattern of regularly spaced, steep-inclined reflectors, which cut across layers 2 and 3 of the oceanic crust. These reflectors are attributed to deformation under a transpressional regime that developed along the SFZ, shortly after spreading ceased at the WSR. Magnetic anomalies 5 to 5 E may be confidently identified on the flanks of the WSR. Our spreading model assumes slow rates (ca. 10–20 mm/yr), with slight asymmetries favoring the southeastern flank between 5C and 5, and the northwestern flank between 5 and extinction. The spreading rate asymmetry means that accretion was slower during formation of the steeper, shallower, southeastern flank than of the northwestern flank.  相似文献   
992.
The characteristics of the halo gas and its interaction with the galactic disk in spiral galaxies are poorly known; this is particularly true for the warm neutral gas associated with HVCs and galactic chimneys. The detection of absorption features such as the NaI D or the CaII (H,K)lines is instrumental to study its detailed physical properties but requires very long integration times. In this work very deep optical spectra of NGC 604, the brightest giant HII region among the nearby spirals, are presented. The detection of two absorption components at LSR velocities -255 km/s and −20 km/s respectively, is reported; the first component is associated with the HII region. The inferred line width after deconvolution is 155 km/s; this large width is produced by the blending of the multiple absorption components produced by the diverse sources of internal motion (expanding shells and general turbulence). The radial velocity of the CaII absorption is slightly larger than the measured in the HII emission lines suggesting a possible flow of gas into the halo above the young star cluster. The large ratio x = W λ (NaID_2)/W λ (CaIIK) = 0.7indicates the probable presence of shocks which release Ca from the dust grains into the gas phase. The lower velocity component most likely trace galactic gas. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
993.
The far-UV spectrum of the T Tauri stars (TTSs) provides important clues about the structure of the stellar atmospheres, winds and accretion shocks. The IUE ( International Ultraviolet Explorer ) Final Archive contains the most complete data base for such studies. A new extraction system, the IUE Newly Extracted Spectra ( ines ), has been developed to overcome the disadvantages of the extraction system used in the IUE Final Archive, the Signal Weighted Extraction Technique ( swet ). We have compared the ines spectra of the whole sample of TTSs in the far-UV range (1200–2000 Å) with the swet low-resolution spectra available in the IUE Final Archive. Although in most of the cases there is a good agreement between both samples, an important enhancement of the ines line fluxes with respect to the swet line fluxes is reported for particular spectra. The line fluxes are enhanced by as much as a factor of ∼2.5 in some objects, which is significant for variability studies of TTSs because the variations of the UV lines are typically of this order. The emission-measure distributions built to study the atmospheres of these stars are based on the UV emission line fluxes, so the new system is susceptible to introduce changes in these models. Moreover, the non-linear enhancement of the ines line fluxes produces variations in diagnostic line ratios usually taken as temperature and density tracers in late-type stars. These line ratios can vary by as much as a factor of 3 when the ines data are compared with the swet , with the subsequent variation of the physical parameters derived from them.  相似文献   
994.
Magnetic data were collected during the Wilkes (1973) and Seacarib II (1987) cruises to the Cayman trough. A new interpretation of magnetic data is carried out. An isochron pattern is drawn up from our anomaly identifications. An early Eocene age (49 Ma, Ypresian) for Cayman trough opening is proposed instead of the late Oligocene or middle Eocene ages suggested by previous studies. Our plate tectonic reconstruction is simpler and fits the on-land geology (Jamaica and Cuba) and the tectonics. Our reconstruction shows a southward propagation of the spreading centre between magnetic anomalies 8 and 6 (26 and 20 Ma). The trough width increases by 30 km in this period. The southward propagation of the Cayman spreading centre from the Middle Oligocene to the Early Miocene induced the development of the restraining bend of the Swan Islands, the formation of a 1 km high scarp on the eastern trace of the Cayman trough transform fault (Walton fault) and the formation of a pull-apart basin (Hendrix pull-apart). Magnetic anomalies and magnetization maps give information about the deformation and the rocks. The proposed evolutionary model of the Cayman trough from the inception of seafloor spreading to the present configuration is presented in relation to the tectonic escape of the northern boundary of the Caribbean plate from the Maastrichtian to the Present.  相似文献   
995.
We constrain the multistage tectonic evolution of the Palaeoproterozoic UHT metamorphic(P=0.9–1.0 GPa,T>1000℃,t=2088–2031 Ma)Bakhuis Granulite Belt(BGB)in Surinam on the Guiana Shield,using large-to small-scale structures,Al-in-hornblende thermobarometry and published fluid inclusion and zircon geochronological data.The BGB forms a narrow,NE–SW striking belt between two formerly connected,~E–W oriented granite-greenstone belts,formed between converging Amazonian and West African continental masses prior to collision and Transamazonian orogeny.Inherited detrital zircon in BGB metasediments conforms agewise to Birimian zircon of West Africa and suggests derivation from the subsequently subducted African passive margin.Ultrahigh-temperature metamorphism may have followed slab break-off and asthenospheric heat advection.Peak metamorphic structures result from layer-parallel shearing and folding,reflecting initial transtensional exhumation of the subducted African margin after slab break-off.A second HT event involves intrusion,at ca.0.49 GPa,of charnockites and metagabbros at 1993–1984 Ma and a layered anorthosite at 1980 Ma,after the BGB had already cooled to<400℃.The event is related to northward subduction under the greenstone belts,along a new active margin to their south.A pronounced syntaxial bend in the new margin points northward towards the BGB and is likely the result of indentation by an anticlinorial flexural bulge of the subducting plate.Tearing of the subducting oceanic plate along this bulge explains why the charnockites are restricted to the BGB.The BGB subsequently experienced doming under an extensional detachment exposed in its southwestern border zone.Exhumation was focused in the BGB as a result of the flexural bulge in the subducting plate and localised heating of the overriding plate by charnockite magmatism.The present,straight NE–SW long-side boundaries of the BGB are superimposed mylonite zones,overprinted by pseudotachylites,previously dated at ca.1200 Ma and 950 Ma,respectively.The 1200 Ma mylonites reflect transpressional popping-up of the BGB,caused by EW-directed intraplate principal compressive stresses from Grenvillian collision preserved under the eastern Andes.Further exhumation of the BGB involved the 950 Ma pseudotachylite decorated faulting,and Phanerozoic faulting along reactivated Meso-and Neoproterozoic lineaments.  相似文献   
996.
A severe dependence of numerical simulations on the mesh density is usually attributed to the presence of strain softening in the constitutive relation. However, other material instabilities, like non-associated plastic flow, can also cause mesh sensitivity. Indeed, loss of ellipticity in quasi-static analyses is the fundamental cause of the observed mesh dependence. It has been known since long that non-associated plastic flow can cause loss of ellipticity, but the consequence for mesh sensitivity, and subsequently, for the difficulty of the equilibrium-finding iterative procedure to converge have remained largely unnoticed. We first demonstrate at the hand of a biaxial test structural softening and a marked mesh dependence for an ideally plastic material equipped with a non-associated flow rule. The phenomena are then analysed in depth using an infinitely long shear layer. Finally, it is shown that the mesh effect disappears when the standard continuum model is replaced by a Cosserat continuum, a well-known regularisation method for strain-softening constitutive relations.  相似文献   
997.
The equations of state for degenerate electron and neutron gases are studied in the presence of magnetic fields. After including quantum effects in the investigation of the structural properties of these systems, it is found that some hypermagnetized stars can be unstable according to the criterion of stability of pressures. Highly magnetized white dwarfs should collapse producing a supernova type Ia, while superstrong magnetized neutron stars cannot stand their own magnetic field and must implode, too. A comparison of our results with a set of the available observational data of some compact stars is also presented, and the agreement between this theory and observations is verified.  相似文献   
998.
999.
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号