首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53442篇
  免费   672篇
  国内免费   1289篇
测绘学   2177篇
大气科学   4011篇
地球物理   10410篇
地质学   21423篇
海洋学   3701篇
天文学   8554篇
综合类   2226篇
自然地理   2901篇
  2021年   249篇
  2020年   291篇
  2019年   362篇
  2018年   5301篇
  2017年   4571篇
  2016年   3353篇
  2015年   745篇
  2014年   907篇
  2013年   1589篇
  2012年   1874篇
  2011年   3890篇
  2010年   3050篇
  2009年   3680篇
  2008年   3174篇
  2007年   3616篇
  2006年   1363篇
  2005年   1207篇
  2004年   1372篇
  2003年   1330篇
  2002年   1113篇
  2001年   747篇
  2000年   793篇
  1999年   650篇
  1998年   661篇
  1997年   583篇
  1996年   466篇
  1995年   453篇
  1994年   465篇
  1993年   365篇
  1992年   360篇
  1991年   303篇
  1990年   349篇
  1989年   314篇
  1988年   295篇
  1987年   324篇
  1986年   291篇
  1985年   383篇
  1984年   392篇
  1983年   391篇
  1982年   378篇
  1981年   330篇
  1980年   334篇
  1979年   262篇
  1978年   261篇
  1977年   250篇
  1976年   221篇
  1975年   220篇
  1974年   211篇
  1973年   200篇
  1972年   134篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
861.
New data are reported on the sulfur isotope composition and concentration of sulfide and sulfate in the upper part of the Black Sea anoxic zone as a function of the potential water density. The observations were performed at a station with the coordinates 44.489° N and 37.869° E three times a week every two days. A local negative deficiency in sulfate concentration up to 1.7% related to the sulfate reduction processes was recorded. This anomaly in sulfate concentration was short-lived and did not affect the sulfur isotope composition. In the upper part of the anaerobic zone, the δ34S(SO4) value varied from 21.2 to 21.5‰, which could have occurred from mixing of water masses from the oxic zone (21.1‰) and the Bottom Convective Layer (23.0 ± 0.2‰). The sulfur isotope composition of sulfide ranged from ?40.8% at a depth of 250 m to ?39.4‰ at the upper boundary of the anoxic zone with a H2S content of only 2.7 μM. Two models (mass balance and fractionation of sulfur isotopes using the Rayleigh equation) are considered to explain the differences in δ34S(H2S) values observed.  相似文献   
862.
Understanding and characterising movement and area-use patterns of fishes within estuaries, as well as understanding the degree of connectivity between estuaries and the marine environment, can provide important insights into a species’ ecology, which is fundamental for effective management and conservation. Mark-and-recapture data obtained from the 082 TAG FISH Project, a dart-tagging programme, were used to describe movement patterns of juvenile leervis Lichia amia in the permanently open Swartkops Estuary, South Africa, as well as the degree of connectivity with the adjacent marine environment. A total of 628 juvenile leervis were tagged from 2008 to 2015, of which 77 fish (12.3%) were recaptured, with juveniles comprising 85.7% of all measured recaptures. The majority of recaptures (75.3%) were made within the Swartkops Estuary, indicating estuarine philopatry, with 23.4% having moved less than 1 km, revealing site fidelity, but most (51.9%) displaying estuarine roaming. A smaller portion of recaptures (27.7%) had dispersed to other habitats; 16 (20.8%) displayed multiple-habitat connectivity, while only 3 (3.9%) had undertaken long-distance movements (>100 km) and were recaptured up to 825 km northeast of the Swartkops Estuary. Lichia amia that had moved greater distances were characterised by a greater mean size and age at the time of recapture. This study provides valuable information on the philopatry and dispersal of juvenile L. amia.  相似文献   
863.
Hydrographic data collected in cyclonic eddies in the Mozambique Channel and Basin revealed notable differences in temperature and salinity at a depth of 100 m, the upper mixed layer, the nitracline depths, and vertical distribution of chlorophyll-a (Chl-a). Differences in temperature and salinity did not show any consistent patterns. In contrast, the differences in the upper mixed layer, nitracline depths and the vertical Chl-a profile appeared to be driven by combined effects of eddy dynamics (i.e. shoaling of isopleths) and the seasonal variation in light availability and mixing conditions in the upper layers. Cyclonic eddies studied during austral spring and summer in the Mozambique Channel exhibited shallower upper mixed layers and nitracline depths, and deeper euphotic zones. Distinct subsurface Chl-a maxima (SCM) were associated with the stratified conditions in the upper layers of these eddies. In contrast, a cyclonic eddy studied during mid-austral winter in the Mozambique Basin had a shallower euphotic zone, deeper upper mixed layer and uniform Chl-a profiles. Another eddy sampled in the Mozambique Basin toward the end of winter showed a less pronounced SCM and roughly equal euphotic zone and upper mixed layer depths, suggestive of a transition from a well-mixed upper layer during winter to stratified conditions in summer.  相似文献   
864.
A numerical simulation of Otsuchi Bay located on the northeast coast of the Honshu, the largest island of Japan, is conducted, using an ocean general circulation model (OGCM) with a nested-grid system in order to illustrate seasonal variability of the circulation in the bay. Through a year, an anticlockwise circulation is dominant in the bay, as observational studies have implied, although it is modified in the bay-mouth-half of the bay in winter. In addition, there is an intense outflow at the surface layer during spring to autumn, influenced by river water discharge. Intrusion of the Pacific water into the bay is influened by mean circulations, but it is also influenced by baroclinic tides from spring to autumn. Pacific water intrusions affected by baroclinic tides may have an impact on the environment in Otsuchi Bay.  相似文献   
865.
Tsunamis associated with the 2011 off the Pacific Coast of Tohoku Earthquake seriously disrupted the shallow marine ecosystem along a 2000 km stretch of the Pacific coast of Japan. The effects of the 2011 tsunamis on the soft-bottom benthic community have been relatively well studied in the intertidal zone, whereas tsunami effects on the subtidal benthos remain poorly understood. Here, we investigated populations of the world’s largest spoon worm Ikeda taenioides (Annelida: Echiura: Ikedidae) in subtidal zone of Funakoshi Bay, Tohoku District, northeastern Japan. Subtidal scuba-diving surveys at two sites in the bay showed extremely long proboscises frequently extending from small holes in the sandy seafloor shortly before and soon after the tsunami disturbances. Based on morphological and molecular identification, the proboscises were revealed to be parts of I. taenioides. On 30 November 2011, 265 days after the tsunami event, many large-sized individuals with >1 m long proboscises were observed; these individuals were probably not derived from post-tsunami larval recruitment but more likely survived the tsunami disturbances. This is surprising because other sympatric megabenthos (e.g. spatangoid echinoids and venerid bivalves) and seagrass beds were almost completely destroyed (although they later recovered) by the tsunamis in this bay. The burrows of I. taenioides are known to be very deep (70–90 cm), which may have sheltered them from the impacts of the tsunamis. Our observations suggest that the effects of the 2011 tsunamis on benthos in soft sediments may differ depending on their burrowing depth.  相似文献   
866.
Urea is an unstable and intermediate organic nitrogenous compound present in coastal environments and is derived from the excretion of some aquatic organisms and wastewater discharges. Urea plays an important role in the nitrogen cycle, where it is utilized by algae, including diatoms. However, there are very limited relevant data on the production, consumption, and degradation of urea because of the lack of appropriate measurement techniques. The conventional method is based on the formation of a colored product when urea reacts with diacetyl monoxime in a sulfuric acid solution. We examined the optimal conditions for the formation of the colored product; specifically, we evaluated different temperatures (22–80 °C), reaction times, mixing ratios of color reagents, and sample storage times. Application of the single mixed color-developing reagent (COLDER) at 70 °C resulted in the optimal formation of the colored product within a short reaction time of 60 min. This method was then used to measure dissolved urea in different coastal environments. The concentrations detected were as follows: 0.65–0.72, 0.49–0.58, and 1.09–2.28 µM urea-N at coral reef, seagrass, and mangrove sites, respectively. Our results showed high precision (SD = 0.02, CV = 1.2%), a low detection limit (0.03 µM urea-N), and a high recovery rate (94–99%). In summary, this high-temperature procedure for urea measurements should be valuable for obtaining high-precision data that can further the understanding of urea dynamics and its role in coastal ecosystems.  相似文献   
867.
The 137°E repeat hydrographic section for 50 winters during 1967–2016 has been analyzed to examine interannual to interdecadal variations and long-term changes of salinity and temperature in the surface and intermediate layers of the western North Pacific, with a particular focus on freshening in the subtropical gyre. Rapid freshening on both isobars and isopycnals began in the mid-1990s and persisted for the last 20 years in the upper main thermocline/halocline in the western subtropical gyre. In addition, significant decadal variability of salinity existed in the subtropical mode water (STMW), as previously reported for the shallower layers. An analysis of the 144°E repeat hydrographic section during 1984–2013 supplemented by Argo profiling float data in 2014 and 2015 revealed that the freshening trend and decadal variability observed at 137°E originated in the winter mixed layer in the Kuroshio Extension (KE) region and was transmitted southwestward to 137°E 1–2 years later in association with the subduction and advection of STMW. The mechanism of these changes and variations in the source region was further investigated. In addition to the surface freshwater flux in the KE region pointed out by previous studies, the decadal KE variability in association with the Pacific Decadal Oscillation likely contributes to the decadal salinity variability through water exchange between the subtropics and the subarctic across the KE. Interdecadal change in both the surface freshwater flux and the KE state, however, failed to explain the rapid freshening for the last 20 years.  相似文献   
868.
The ocean drift current consists of a (local) pure drift current generated by the interaction of wind and waves at the sea surface, to which the surface geostrophic current is added vectorially. We present (a) a similarity solution for the wave boundary layer (which has been validated through the prediction of the 10-m drag law), from which the component of pure drift current along the direction of the wind (and hence the speed factor) can be evaluated from the 10-m wind speed and the peak wave period, and (b) a similarity solution for the Ekman layers of the two fluids, which shows that under steady-state neutral conditions the pure drift current lies along the direction of the geostrophic wind, and has a magnitude 0.034 that of the geostrophic wind speed. The co-existence of these two similarity solutions indicates that the frictional properties of the coupled air-sea system are easily evaluated functions of the 10-m wind speed and the peak wave period, and also leads to a simple expression for the angle of deflection of the pure drift current to the 10 m wind. The analysis provides a dynamical model for global ocean drift on monthly and annual time scales for which the steady-state neutral model is a good approximation. In particular, the theoretical results appear to be able to successfully predict the mean surface drift measured by HF Radar, which at present is the best technique for studying the near surface velocity profile.  相似文献   
869.
Two distinct layers usually exist in the upper ocean. The first has a near-zero vertical gradient in temperature (or density) from the surface and is called the isothermal layer (or mixed layer). Beneath that is a layer with a strong vertical gradient in temperature (or density), called the thermocline (or pycnocline). The isothermal layer depth (ILD) or mixed layer depth (MLD) for the same profile varies depending on the method used to determine it. Also, whether they are subjective or objective, existing methods of determining the ILD do not estimate the thermocline (pycnocline) gradient. Here, we propose a new exponential leap-forward gradient (ELG) method of determining the ILD that retains the strengths of subjective (simplicity) and objective (gradient change) methods and avoids their weaknesses (subjective methods are threshold-sensitive and objective methods are computationally intensive). This new method involves two steps: (1) the estimation of the thermocline gradient G th for an individual temperature profile, and (2) the computation of the vertical gradient by averaging over gradients using exponential leap-forward steps. Such averaging can filter out noise in the profile data. Five existing methods of determining the ILD (difference, gradient, maximum curvature, maximum angle, and optimal linear fitting methods) as well as the proposed ELG method were verified using global expendable bathythermograph (XBT) temperature and conductivity–temperature–depth (CTD) datasets. Among all the methods considered, the ELG method yielded the highest skill score and the lowest Shannon information entropy (i.e., the lowest uncertainty).  相似文献   
870.
Newly collected, high resolution multi-beam sonar data are combined with previous bathymetry data to produce an improved bathymetric map of Shatsky Rise oceanic plateau. Bathymetry data show that two massifs within Shatsky Rise are immense central volcanoes with gentle flank slopes declining from a central summit. Tamu Massif is a slightly elongated, dome-like volcanic edifice; Ori Massif is square shaped and smaller in area. Several down-to-basin normal faults are observed on the western flank of the massifs but they do not parallel the magnetic lineations, indicating that these faults are probably not related to spreading ridge faulting. Moreover, the faults are observed only on one side of the massifs, which is contrary to expectations from a mechanism of differential subsidence around the massif center. Multi-beam data show many small secondary cones with different shapes and sizes that are widely-distributed on Shatsky Rise massifs, which imply small late-stage magma sources scattered across the surface of the volcanoes in the form of lava flows or explosive volcanism. Erosional channels occur on the flanks of Shatsky Rise volcanoes due to mass wasting and display evidence of down-slope sediment movement. These channels are likely formed by sediments spalling off the edges of summit sediment cap.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号